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Abstract

Probabilistic Semantics for Modal Logic
by
Tamar Ariela Lando
Doctor of Philosophy in Philosophy

University of California, Berkeley

Professor Paolo Mancosu & Professor Barry Stroud, Co-Chairs

We develop a probabilistic semantics for modal logic, which was introduced
in recent years by Dana Scott. This semantics is intimately related to an older,
topological semantics for modal logic developed by Tarskiin the 1940’s. Instead
of interpreting modal languages in topological spaces, as Tarski did, we interpret
them in the Lebesgue measure algebra, or algebra of measurable subsets of the real
interval, [0, 1], modulo sets of measure zero. In the probabilistic semantics, each
formula is assigned to some element of the algebra, and acquires a corresponding
probability (or measure) value. A formula is satisfed ina model over the algebra
if it is assigned to the top element in the algebra— or, equivalently, has probability
1.

The dissertation focuses on questions of completeness. We show that the propo-
sitional modal logic, S4, is sound and complete for the probabilistic semantics
(formally, S4 is sound and complete for the Lebesgue measure algebra). We then
show that we can extend this semantics to more complex, multi-modal languages.
In particular, we prove that the dynamic topological logic, S4C, is sound and com-
plete for the probabilistic semantics (formally, S4C is sound and complete for the
Lebesgue measure algebra with O-operators). The connection with Tarski’s topo-
logical semantics is developed throughout the text, and the frst substantive chapter
is devoted to a new and simplifed proof of Tarski’s completeness result via well-
known fractal curves.

This work may be applied in the many formal areas of philosophy that exploit
probability theory for philosophical purposes. One interesting application in meta-
physics, or mereology, is developed in the introductory chapter. We argue, against
orthodoxy, that on a “gunky’ conception of space—a conception of space accord-
ing to which each region of space has a proper subregion—we can still introduce
many of the usual topological notions that wehavefor ordinary, “pointy” space.
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Chapter 1

Introduction

1.1 Introduction

Almost half a century has now gone by since S. Kripke introduced Kripke seman-
tics for modal logic. This semantics crystalized ideas in the analysis of modal
propositions that can in some sense be traced back to Leibnitz, and his conception
of ‘necessity” as that which holds not just in the actual world, but in all possi-
bleworlds. Today Kripke semantics is standard not just in philosophical circles,
but in such related disciplines as linguistics, computer science, and mathematics.
No other semantics for modal languages rivals the simplicity and fexibility of the
Kripke framework.
But long before Kripke, there was Tarski.
Lookingattheaxiomsfor themodallogic, S4, Tarskirealized that, rearranged a
certain way, these axioms resembled the axioms used by mathematicians to de-
scribe a topological space.! If you are unfamiliar with topology, don’t worry.
Think of a topological space (or simply a space) as a collection of points glued
togetherinsome way. The mostfamiliar spaceis, perhaps, three-dimensional Eu-
clidean space. Here we think of individual points as triples of real numbers. This
space has some special features: between every two points, there is a well-defned
distance; a sequence of points that converges, converges to a single point; andso
on. What Tarski showed is that modal logic can be interpreted in topological
spaces, and that —in a sense to be further specifed below — the modal logic S4 is
thelogic of topological spaces. Here, rather than thinking of the ‘necessity’ or ‘D’-

modality as picking out some collection of possible worlds, Tarski thought of itas
1Recall that a topological space is a pair, X, , where X is a set, and is a collection of

subsets of X that is closed under fnite intersecﬂonsrqrbitrary unions, and contains the entire set X
and theempty set, &. -



a spatial operator, which picks out the interior of a region of topological space.
Tarskiand McKinsey’s workin the 1930’sand 1940’sled towhatisnow called
the topological semantics for modal logic. Their elegant completeness results pre-
date Kripke semantics by more thana decade, butin the years after the introduc-
tion of the Kripke framework, the topological semantics was largely forgotten. The
fexibility of the Kripke framework — the fact that it can be used to model not just
S4, but many different propositional and predicate modal logics —as well as its
intuitive appeal are perhaps jointly responsible for the near-oblivion into which
the topological semantics fell. In the last ffteen years or so, however, things have
changed. Modal logicians, familiar with the many advances in temporal logics
(or modal logics used to describe time, and temporal processes) started asking,
‘What about a modal logic of space?’ Tarski’s work on the topological semantics
came to be seen as the foundation stone of a much broader project: using modal
logic to describe, make distinctions between, and systematize our reasoning about
space and spatial structures. This research program has produced many new and
interesting results in recent years: logicians have simplifed and refned Tarski and
McKinsey’s original completeness results; extended Tarski’s topological semantics
to more complex, multi-modal languages; and proved new results concerning the

model theory and complexity of these extensions.

Inthe pages that follow, we take Tarski’s topological semantics as our starting
point. This is not to say that we ignore Kripke’s relational semantics —far fromit.
Interesting relationships between the two will be developed throughout the text. But
the primary aim of this work is not, in fact, to develop either Tarski's topolog- ical
semantics, or Kripke semantics. Rather, it is to introduce the reader to a new way of
interpreting modal languages — one that can be developed quite naturally, as we'll see,
from Tarski's topological semantics, but which differs in important ways fromany of
the well-known semantics for modal logics to date.? Those semantics all share the
following feature. In a given modal model (or formal interpretation ofthe modal
language), each formula is either true or false. In Kripke semantics, we say thata
formulaistrueinamodelifit’s true atevery (accessible) possible world in the model.
In the topological semantics, we say thataformulais trueinamodelif it'strue at
every point in the relevant topological space. What if instead we inter- preted modal
languages probabilistically? What if, in other words, each formula in a given model
gotassigned notjusta truthvalue, butaprobability valuebetweenOand1? The
idea for a probabilistic semantics was introduced by Dana Scott in the last several
years, in talks given at Stanford and Berkeley. As Scott said, the semantics
“provides rich ingredients for building many kinds of structureshaving
*For a probabilistic semantics for classical logic, see K. Popper’s (31) and H. Field's (12). See

also Keisler’s (16) and (17).




non-standard random elements.” At the time, however, many fundamental ques-
tions about the semantics — particularly those relating to completeness —were still
unanswered. In the chapters that follow, we answer some of these questions, and
show that the probabilistic semantics can be elegantly extended to more complex,
multi-modallanguages.

In embarking on the work that follows, the question naturally arises: Why defne a
new semantics for modallogic in the frst place? Isn’t the standard Kripke seman-
tics good enough?

There are two ways to respond. On the one hand, we may start out from an
interest in existing modal languages (or existing axiomatic modal systems), and
be interested in what the different semantics for these languages are. Here, of
course, the probabilistic semantics will have quite different features from the stan-
dard Kripke semantics and even from the topological semantics for S4. Formulas,
as we noted, acquire not just truth values in probabilistic models, but probability
values. Someone interested in the various uses to which probability theory has been
put in the more formal areas of philosophy might take interest in this new seman-
tics for this reason. But secondly, one might start out from an interest in certain
mathematical objects themselves —topological spaces, say, or topological spaces
together with Borel measures in the present case. Then one will want to know: to
what extent can modal languages describe, make distinctions between, and help us
reason about these structures? From this point of view, the fexibility of Kripke
semantics — the fact that it can be used to interpret not just S4, but many different
modal logics —is not essential. What we want to know is what modal logics the
mathematical objects we're interested in give rise to, and what distinctions between
such objects can be made within the confnes of different modal languages.®

As the reader moves forward through the work of the next chapters, she is
invited to keep these two perspectives in mind. The new semantics presented here
is not meant as a rival for Kripke (or relational) semantics. Rather, the hope is
thatthe probabilisticsemantics can takeits place alongside those other semantics,

’]. Van Benthem makes this point in connection with Tarski’s topological semantics:

Some modal logicians see topological models as a means of providing new semantics for
existing modal languages, mostly for logic-internal purposes. This can be motivated a bit more
profoundly by thinking of topologies as models for information, making this interest close to
central logical concerns. But someone primarily interested in Space as such will not worry
about the semantics of modal languages. She will rather be interested in spatial structures by
themselves,and spatiallogics will bejudged by how well they analyze old structures, discover
new ones, and help inreasoning about them. (40, p. 11)



opening up somenew avenues, both philosophically and mathematically. Why not
letathousand fowersbloom?

1.2 Modal beginnings

4

But frst: what exactly is modal logic?

The standard propositional modal language consists of some countable collec-
tion of propositional variables, {Pn | n=1,2,3, ...}, the Boolean connectives,
{=,V,,— »—} ,and thetwomodal symbols, D and 3. The symbols D and 3are
typically interpreted as expressing ‘It is necessary that . .. " and ‘It is possible that
.../ respectively. More generally, modal symbols may be used to express a host
of modalities from natural language —including, as we’ll see, temporal, deontic,
epistemic and, of course, metaphysical modalities. What exactly is a modality? R.
Goldblatt says,

A modality isany word or phrase that can be applied to a given statement S to
create a new statement that makes an assertion about the mode of truth of S:
about when, where or how S is true, or about the circumstances under which S
may betrue. (13, p.310)

Goldblattgivesasexamplesthe Englishlanguage expressions, “henceforth,” “even-
tually,” “hitherto,” “previously,” “itisobligatory/ forbidden/ permitted / unlawful that,”
“it is known to X that,” “it is common knowledge that,” “it is believed that,” and so
on. Modal logics, we can say, are logics expressed in modal languages. They have
been used to get at the meaning of, and formalize many of these English-language

modalities.

1.2.1 Early motivations

The modern history of modal logic begins perhaps with C.I. Lewis. Lewis was
motivated by the idea of understanding the English-language “implies” —a condi-
tional connective that he took to have quite different properties from the material
conditional of classical logic. “Expositors of the algebra of logic,” Lewis noted,
“have not always taken pains to indicate that there is a difference between the al-
gebraic and ordinary meanings of implication.” Lewis was particularly disturbed by
what have come to be known as the paradoxes of the material conditional: the

*My account of the history here follows Goldblatt in (13). See his excellent discussion for much
more detail.



fact that in classical logic a false proposition implies (in the algebraic sense) any
proposition, and a true proposition is implied by any proposition. Insymbols,

~P—(P- Q)
P - (Q—P)

Under the ordinary meaning of implication, Lewis thought that ‘P implies Q'
means something like, ‘Q can be legitimately inferred from P. But one cannot
legitimately infer any proposition from a false proposition. The paradoxes of the
material conditional highlighted the way in which the material conditional of clas-
sical logic failed to capture the ordinary meaning of “implies” —a connective which
Lewis thought stood at the foundations of fundamental notions in logic. “Unless
‘implies” has some proper’ meaning, there is no criterion of validity, no possibil-
ity even of arguing the question whether there is one or not,” Lewis claimed. “And
yet the question, What is the “proper’ meaning of ‘implies’? remains peculiarly
diffcult.” (24, p.325)

What system of logic, if not the classical one, could formalize the ordinary
meaning of “implies”? The proposition expressed by ‘A implies B’ was, accord-
ing to Lewis, equivalent to the proposition expressed by “Either not-A or B.” But
Lewis distinguished between what he called an extensional and intensional read-
ing of “or.” On the extensional reading, “or” is the truth-functional disjunction
of classical logic. This yields the algebraic meaning of “implies” as a material
conditional. But on the intensional reading of “or,” Lewis claimed that “at least
one of the disjuncts is necessarily true.” Using this intensional reading to under-
stand the ordinary meaning of implies, ‘A implies B’ is equivalent to ‘Necessarily
not-A or B.” To understand the ordinary “implies,” Lewis was moved to appeal to
modal vocabulary — vocabulary that he thought functioned differently from any of
the truth-functional connectives of classical logic.

Lewis came at modal logics from a syntactic, or axiomatic, point of view. His
aim was to identify axioms and rules of inference in a new, modally-enriched
language — ones that would be appropriate to what he took to be ordinary impli-
cation. Inan appendix to their 1932 volume, Symbolic Logic, Lewis and Langford
defned fve different axiomatic modal systems, S1 - S5. In these systems ‘3
is taken as a modal primitive, with the intended interpretation “possibly” or “it
is possible that.” The strict conditional —which was meant to formalize ordinary
implication — is then defned in terms of this modal primitive as follows:

P=Q=-3(P&—-0)

In words: ‘P implies Q' is equivalent to ‘It is not possible that P and not-Q.” (Al-
though Lewis did not himself introduce a separate “necessity” operator, D, itcan



be defned in terms of 3 and in the usual way: Dg -3 -@. In words: ‘Nec-
essarily P’ is equivalent to ‘It is not possible that not-P.") The systems, S1 - S5,
were the frst modern axiomatic systems of modal logic.

1.2.2 Relational semantics formodallanguages

Already at the beginning, there was a range of views about what modalities the
symbols ‘D" and “3" naturally expressed. While Lewis took them to symbolize
necessity and possibility, respectively, Go del saw in the new language a way of
talking about provability within a formal system. He interpreted ‘D’ as the senten-
tial operator ‘It is provable that...,” and argued that on this interpretation, S4 was
the correct axiomatic system. McKinsey and Tarski, meanwhile, noticed the deep
connection between Lewis’s axioms for S4 and Kuratowski’s axioms for a topo-
logical interior operator. They interpreted ‘D’ spatially, as picking out the interior
of a region of topological space (more on this below). Finally, Prior interpreted
modal languages temporally, and took ‘D" and ‘3" to symbolize the temporal sen-
tential operators, ‘Henceforth ...” and “Atsome point in the future...” (or ‘Until
now...”and “Atsome pointin the past...”). These differing viewpoints struck, in
some sense, at the heart of the modal logic program: What was modal logic about?
Whatmodalities did it seek to formalize?

Although Lewis did not concern himself with the problem of giving a for-
mal semantics for modal languages, interest in the subject was quickly growing.
Broadly speaking, there were two competing traditions that developed more or less
simultaneously: the algebraic tradition, in which modal languages are interpreted
in Boolean algebras with operators, and the relational tradition, which culminated
in Kripke’s possible world semantics. We focus in this section on the latter, in view
of it's present-day prominence.

An early precursor to Kripke's possible worlds semantics was proposed by
Carnap.’ According to Carnap, “necessity” was to be interpreted as logical truth, or
analyticity (truth in virtue of meaning alone). Infuenced by Leibnitz’s analysis of
necessity as that which holds in all possible worlds, Carnap introduced the notion
of a state description. A state description for a propositional language, L, is a
collection of sentences in which for every propositional variable Pin L, either
P or Rjis in the collection, but not both—and nothing else is in the collection.
Each state description is a total specifcation of truth for the propositional variables
in L. We can think of a state description as picking out some possible world, or
possible state of affairs, as described by the language L. The collection of all state
descriptions for Lis, then, the collection of all possible worlds or states of affair

°See (8) and (9).



visible from the point of view of the language, L. In Carnap’s semantics, P holdsin
a given state description if Pis a member of the state description; ‘¢ v ¥ holds
ifeither’@ holdsor’y holds;” @ holdsif’¢’ doesnothold. Carnap’sideawasto
analyze necessity, or logical truth, as truth across all state descriptions. Thus, the
formula ‘ Do’ holds in a state description if ‘@’ holds in every state description. © A
number of problems attended Carnap’s semantics, some of which Carnap himself
recognized. One simple one concerns the failure of standard laws of sub- stitution.
In particular, since there is always a state description in which Pis true, the formula
3P (or - D P)istrueinevery state description. Nevertheless, the
formula 3(R& P) is not true in any state description. Taking validity to be
truth across all state descriptions, we cannot substitute ‘P& P’ for ‘P’ while
preserving validity. This violates Lewis’s rule of Uniform Substitution, accord-
ing to which one can substitute arbitrary propositions (sentences) for propositional
variables (sentence letters) in valid formulas.3?(Other problems concern the failure of
completeness for quantifed S5, but we do not go into this here. For a brief
discussion, see (4). For a fuller discussion, see (25).)

In the late 1950’s, Kripke came up with an idea for a formal semantics for
modal logic that effectively did away with this problem. (Kripke was not respond-
ing to Carnap —he arrived at this early work independently, while still in high
school!) Hisidea was to interpret propositional modal logicin partial truth ta-
bles — or truth tables, in which some of the rows are deleted. Each row of the truth

SAlthough Carnap’s semantics was developed for frst-order modal languages with the modal
operators, ‘D’ and ‘3, we present only the simpler propositional case.
"More formally, in Carnap’s semantics, we get the following recursive defnition of satisfaction.
Let M be a state description, and ¢ a formula in a propositional modal language, L. Then:

1. M |=Piff P € M (for any propositional variable, P).

2. M |=—¢iffit'snot the case that M |= ¢.

3. M|=¢V yiffeither M |=por M |=y.

4. M|=Dgiff M°|= pforevery state description M°in thelanguage L.

The important clause is the modal one. ‘Necessarily ¢" holds in a state description, M, just in case
‘¢ holds in every state description. One important consequence of this defnition of satisfaction
is that if the sentence ‘Necessarily ¢’ is true in one state description, then it is true in every state
description. Necessity is not world-relative, as we might say.

5The SEP entry, “Modern Origins of Modal Logic,” points out that Carnap nevertheless proved
completeness of propositional S5 for his semantics, but that the proof employs Quine’s schematic
notion of validity, according to which “alogical truth... is defnable as a sentence from which we get
only truths when we substitute sentences for its simple sentences.” (32, p. 50)

Somewhat more generally, the problem with Carnap’s semantics was thatif the sentence “Nec-
essarily ¢’ is truein onestate description (or possible world), thenitis true inevery state description.
Asaconsequence, we cannot have two models of the modal language, on this semantics, in which
‘Necessarily ¢’ is true in one but not the other.



table for a given sentence, ‘,’ is an assignment of truth values to the propositional
variables occurring in‘¢’. Again, we can think of these rows as possible worlds
insome attenuated sense. In Kripke’s early conception, amodel for a formula“ ¢
in the standard propositional modal language is a paig G, K, where K is some
collection of truth assignments for the propositional variables occurring in ‘¢, and
Gis a member of K. (Thus, a model is a partial truth table in which one row is
highlighted.) Each truth assignment in K assigns a truth value to every subformula
occurring in ‘¢’ according to the usual recursive clauses for Boolean connectives,
as well as the following rule for the ‘D’-modality:

D is true just in case w is true in every member of K

Thus, tosay that ¢’ is trueina modelis to say that ¢’ is true throughoutall truth
assignments in that model. In this semantics, we say that a formula is validif itis
true in every suchmodel.

Notice that under these rules, neither ‘3P’ nor ‘3(f P )’ is valid! Indeed,
if we select only rows of the truth table where ‘P’ is false, then in this model,
‘3P =D, B’ is false. So ‘3P’ is not valid. More generally, depending on K—
orourselectionof rowsof the truth table —“ 3P’ istrueinsome modelsand falsein
others (and thesamefor‘D P, or boxed formulas generally). The ability torestrict
the collection of possible worlds, K, that matter for the truth of modal formulas
is what allows us to do away with the problems faced by Carnap. Kripke showed
that the partial truth table semantics is sound and complete for Lewis’s S5—the
strongestof theaxiomaticsystemsintroduced in Lewisand Langford (1932).

But what about weaker propositional logics? Consider, for example, the for-
mula ‘P _D3P. This formula is not a theorem of S4, and so should not come
outvalid inany (complete) semantics for thatlogic. But the formulais satisfed in
every partial truth table. Indeed, if there is some row of the truth table in which P
is true, then 3P is true in every row, and so D3P is true in every row as well. If,
on the other hand, there is no row where Pis true, then the formula comes out true
in every row in virtue of the fact that the antecedent is false. The simple partial
truth tables semantics, while suitable for S5 (where this formula is a theorem), did
not suggest a semantics for the full range of propositional modal logics. In order to
give a proper semantics for these systems, a full-blown relational structure had to
be developed. (Notice that such structure was implicit—in hindsight —in the sim-
ple partial truth tables. If we think of each row ina truth table as a possible world,
then a partial truth table consists of some collection of possible worlds, each of
which is related to every other.) Such structures had been considered in some form
by Hintikka, Kanger, and Prior butitwasn’tuntil Kripke’sworkin theearly 1960’s



Figure 1: A Kripke frame, F = huo, W, Ri, where W = {wn, w1, w», ws} and
R = {hwo, wii, hwo, wai, hun, wail.

that a fully fexible and workable version was articulated.”

1.3 Kripke semantics

By now, several of the ideas that appear in the mature version of Kripke semantics
[Kripke, 1963] are familiar. The semantics interprets modal formulas in relational
structures (or frames), which consist of some set of possible worlds, together with
a binary ‘accessibility” relation on worlds. Pictorially, we can think of a Kripke
frame as a graph consisting of some collection of nodes together with arrows point-
ing from some nodes to others. (See Figure 1.) To say that ‘D¢’ is true at a par-
ticular world, w), is to say that "¢’ is true throughout the worlds that are accessible
from w. More informally: It is to say that from the point of view of w, @ is true as
far as the eye can see. (Similarly, to say that ‘3¢’ is true at w is to say that ‘¢ is
true atsome possible world accessible from w.)

Formally, a Kripke frame is a triple F = yp, W, R j where W is a set of
possibleworlds, wois a member of W (theactualworld), and Risabinaryrelation
onworlds. A Kripkemodelisapair f,V ,where Fisaframe,and V: W R, _,
{>, 1 I8 avaluation function, assigning to each world and propositional variable
a truth value (the truth value of that proposition in the given world). We extend the
valuation function to the set of all formulas in the language in the way one would
expect. Inwords, ‘@ Vv y/ is true at a world wjustin case ¢’ is true at wor’y/ is
true at w; ‘@ A y/ is true at wjustin case ¢’ is true at wand ‘y/ is true at w; and
‘= ¢ istrue at wjustin case @is not true at w. But what about the modal symbol,
‘D’? Theformula“D ¢’ is true at wjustincase’¢’ is trueateach world uP such

%For a very thorough account of this history, see (13).
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that wRw'. More colloquially, “D¢’ is true at a world w if “¢” is true at all worlds
accessible from w. Note thatitis the binary accessibility relation thatallowsus to
interpret modalities in Kripke semantics.”*!

Here we see for the frst time the full-fedged relational framework. Instead of
each possible world being related to (or accessible from) every other, we have, as
Kripke puts it, a notion of one world being possible relative to another.

Weread “ HiRH2” as H2is “possible relative to Hi,” “possible in H1” or “re-
lated to H1”; that is to say, every proposition true in H2is to be possible in Hi.
Thus the “absolute” notion of possible world in [1959a] (where every world
was possible relative to every other) gives way to relative notion, of one world
being possible relative to another .. .In accordance with this modifed view of
“possible worlds” we evaluate a formula A as necessary in a world Hiif itis
true in every world possible relative to Hi. . . . Dually, A is possible in Hi iff
there exists H, possible relative to Hi, in which Ais true. (20, p. 70) quoted
in (13)

The relational structure in Kripke semantics gives us great fexibility. Tosee,
for example, how in this semantics we can refute the formula P D3P, con-
sider amodel consisting of two worlds, wiand w2, where wi points to wp, and P
istrueat wibutnot wy. (See Figure 2.) Here wz does not point toany world where
‘PYis true, so ‘3P’ is false at wp. Since w1 points to wy, ‘D3P’ is false at wi. It
is the relational framework —in particular, the fact that not every world is related
to every other — that allows us to fnd a refuting model for this formula in Kripke
semantics. 12

"More formally, we extend the valuation function, V, according to the following recursive
clauses:

1. V(w, oV p) =>iff V(w, @) = > or V(w, p) = >;
2. V(w, @) = > iff V(w, @) = L;
3. V(w, Do) = > iff vV, @) = > for each w' € W such that wRwW'.

A slightly more complex version of the semantics for predicate modal languages was presented in
(20), butinkeeping with the focus here on propositional modal logics, we skip over this material.
2Asis well-known, simple conditions on the accessibility relation correspond to various special
axioms of Lewisand Langford’s axiomatic systems. For example, if we require that the accessibility
relation on worlds is refexive (i.e., every world points to itself), we validate the axiom of the system,
T:’P 3P Why? If Pis true at a given world, w, then since Ris refexive, w points to itself. So
wpoints tosome world where Pis true. This means that the formula’P 3P’issatisfed inevery
model defned over a refexive Kripke frame. Moreover, if a frame is non-refexive, then the formula
canberefutedinthatframe. Consideraworld, wi, which doesnotpointtoitself. Let Pbetrueat
w) and false everywhere else. (See Figure 3.) Here P is false at every world to which wj points. So

3P is false at wy, and we have refuted ‘P — 3P . The example shows that Axiom T corresponds

10
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Figure 2: A refuting model in Kripke semantics for the formula ‘P — D3P’

@

- P

-P

Figure 3: A refuting model for the formula ‘P.3P ’ in an arbitrary, non-
refexive Kripke frame. The Kripke frame is non-refexive at the world w1, which
is where we falsify ‘P — 3P.

1.4 Space and topological semantics

Relational structures provide a natural setting for interpreting modal languages, but
let us now shift gears. Wesaid above that some two decades before Kripke intro-
duced Kripke frames, Tarski noticed a surprising connection between the axioms
of Lewis’s S4, and the axioms used to describe topological space. His work led to
what is now called the topological semantics for modal logic. Here modalities are
interpreted not via a binary accessibility relation between worlds, but via the topo-
logical structure of space. To understand the semantics, we need to say something
about whata topology, or topological space is.

1.4.1 A mathematical view of space

In our ordinary lives, we have a number of well-entrenched views about space and
spatial properties. Any two distinct points bear a precise distance relation to one
another. A sequence of points that converges, converges to a single point. No two
points are infnitely far away. And so on. From a mathematical point of view, these
features of space are not universal. When we think about space mathematically, we
think in more general terms: there are many different kinds of space, with different
spatial properties. For example, not all spaces come with a notion of “distance.’

to the class of refexive Kripke frames. Similar arguments show that other axioms correspond to the
classof transitive frames, symmetric frames, and frames inwhich Risanequivalencerelation.

11



In some spaces, it is impossible to say that one point stands three units away from
another. Indeed, spaces that do allow for a notion of distance are rather special:
we call them metric spaces, or spaces that have a metric (read: distance) function
defned on them. What, then, is space in the fully general, mathematical sense that
weareafter?

A space, as we think of it here, is just a collection of points that are glued
together in a certain way.

There are two ways to understand this. The frstinvolves the notion of a neigh-
borhood, or as mathematicians say, open set.'® Think of the city of London. That
city is made up of a very large number of different points on the earth that lie inside
of its municipal boundaries. These points lie at various distances from one another:
the Big Ben is (let us suppose) one mile from the Tate Modern, which is itself an-
other half mile from the London Eye. But quite apart from specifc distances, there
are also neighborhoods in London: Hampstead, Notting Hill, Chelsea, and so on.
Some of these neighborhoods overlap; others are disjoint. Imagine throwing out
all information about the relative distances between individual points in the city.
London, as you view it now, is a collection of points linked together by a system
of neighborhoods. The information about neighborhoods furnishes some sense of
how points in this space are related to one another spatially. When we speak of
space mathematically, in a completely general way, we view it in this way: as a
collection of points together witha system of neighborhoods, or opensets.

These open sets, or neighborhoods, must satisfy certain conditions if they are
to defne a topology on the underlying set of points. In words these conditions state
that the entire space and the empty set are open; the intersection of any two open
sets is open; and fnally, the union of any collection of open sets is open. More

formally, a topological spaceisa pair, hX, T i, where Xisaset (of ‘points’),and
T is a collection of subsets of X that satisfes the following conditions:

1.XeT,0eT;
2. IfS1,S €T, thenS1IN S eT;
S
3. If{Silie I} < T,then ;o,;SieT.

We call the sets infopen. Any collection of subsets of X that satisfes these con-
ditions defnes a fopology on X. Again, space according to this defnition consists
of acollection of points together with a system of open sets, or neighborhoods.
A second, less familiar way to think about space is as a set of points together
withaninterioroperator. Thisoperatoridentifes, forany subset of points, whatthe

BAlthoughitis standard to use the expression ‘neighborhood of x’ to meanany setcontainingan
opensetcontaining x, we use the term ‘neighborhood’ tomean, simply, openset.
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interior of that subsetis. Think of the interior of a region as the region minus any
boundary points. For example, if we start out with a potato-shaped region of three-
dimensional Euclidean space, the skin of the potato is the boundary, and the interior
is the white, feshy stuff inside. Or, starting with a disc in two-dimensional space,
the circumference of the disc is the boundary, and everything else is the interior.
There may be regions of space that have no interior. For example, the region of
thereal plane consisting of a pointat (0,0), another pointat (1,0), another point at
(2,0), and so on. This region is all boundary. Or, there may be regions of space
that have no boundary. Consider, for example, the open disc in two-dimensional
space —the disc without any of the points along its circumference. This region is all
interior. Information about the interior of each region of space again gives us some
conception of how points in the space ft together spatially. On this way of viewing
things, we think of space as a collection of points, together with information about
what the interior of eachregion, or subset of points, is.

Again, the interior operator must satisfy certain conditions in order to count
as an interior. In words these conditions state that the interior of any regionis a
subset of thatregion; the interior of the whole spaceis the spaceitself; the interior
of the intersection of two regions is the intersection of their interiors; and fnally,
the interior of the interior of a region is just the interior of that region. (Iterating
interiors gives us nothing new.) More formally, let X be a set of points, and let A
and B be arbitrary subsets of X. Then an interior operator, I, on X must satisfy:

1) IX=X
(2) TAcSA.
(3) IANnB)=IANIB.
4) TA=TA.
On this conception of space, a topology consists of a set of points, X, together with
an interior operator, I, on X. Again, any operator that satisfes these conditions
defnes a topology on X. (Thus, there may be many different topologies on any
givensetof points.)

Although these two ways of viewing space may seem quite different, froma
mathematical point of view they are interchangeable. Starting from a collection of

open subsets of X, we can defne the interior of any set Sc X to be the union of
all opensets contained in S:

L
Interior (S) = {Oopen | O c S}

13



Or, starting fromaninterior operator on X, wecandefneanopensetasaset that
isequal toits own interior:

S is open if and only if Interior (S) = S

The technicalities here are, for the moment, not essential. The point is just that
information about spatial structure is encoded in the collection of open sets, or
alternatively, the topological interior operator.

1.4.2 Topological semantics

But what does any of this have to do with modal logic?

In the late 1930’s, McKinsey and Tarski were studying what they thought of as
the “algebra’ of topology. A topological space can be represented as the Boolean
algebra of all subsets of the space. Here the interior operator is conceived of as
an operator on the algebra itself, taking elements of the algebra (subsets of points)
to other elements of the algebra.!* Thus, a topological space is represented as a
Boolean algebra with an operator. Viewed in this way, Kuratowski’s axioms are
really just algebraic equations. They tell us that the interior of the top element in
the algebra is equal to the top element; the interior of any element is less than or
equal to thatelement; the interior of the meet of two elements is equal to the meet
of theinteriors; and fnally the interior of the interior of any elementis equal to the
interior of that element. More formally, the algebraic analogs of (1) - (4) are:

a*» 11=1.
2*) Ia<a.
B*)I(aAb)y=TaAIb.

@*)Ta=1Ia.

where “1” denotes the top element of the algebra.
Buthere now wasacurious thing. Substituting ‘D’ for*I in these equations, ',
and rearranging things abit, what we getisjust the axioms for the modallogic S4!

“Meets, joins and complements in the algebra are, respectively, set-theoretic intersections, unions
and complements.

> And, of course, making the appropriate substitutions for Boolean connectives —in particular,
replacing <’ with'—, ‘N’ with’&, and ‘=" with’—’
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Or, conversely, substituting I’ for ‘D’ in the axioms for S4, what we get is the al-
gebraic version of Kuratowski’s axioms for a topological interior.'® In other words,
aset of axioms introduced by Lewis and Langford to formalize the ordinary notions
of possibility and necessity were the very same axioms (under this translation) that
describe topological space, or space as it is understood mathematically!
This discovery must have been quite surprising. A friend of mine, D. Sarenac,
likes to imagine the following scenario. It is sometime in the early 1930’s and C.
I. Lewis and C. H. Langford are puzzling over what exactly the new axioms for
modal logic should be. Langford is tending to the fre; Lewis is sitting in an arm-
chair nearby, pen and paper in hand. The two men are engaged in the following
conversation:

Lewis: So, Langford, about those axioms for our new system of ‘necessity” and
"possibility’. . .

Langford: Yes?

Lewis: Well, Iwas wondering. Suppose that “Necessarily P’ is the case. Does
itfollowthatPisthecase?

Langford: Yes, sir, I believe it does. If Pis necessarily true, then P must, at the
very least, be true, right?

Lewis: Okay, I'm with you there, Langford. But how about this. Suppose ‘Nec-

!%The modal logic S4 in the language L consists of some complete axiomatization of classical
propositional logic, PL, some complete axiomatization of the minimal normal modallogic, K, say
the axiom:

K:D(p — p) — (Dp — Dy)
and therule:

N: ¢@= Do

togetherwiththespecial S4 axioms:

T:Dp— ¢
4:Dep — DDo
With a bit of work, K together with N yield: R(¢p @) (Do Dy). This states that the

intersection of the interiors of tworegionsis equal to the interior of the intersection of those regions.
N states that the interior of the entire space is the space itself. T states that the interior of a regionis

asubset of that region. Finally, 4 together with T states that the interior of the interior of a regionis
just the interior of that region. The connection to Kuratowski's axiomatization of the interior operator
should now beclear.

15
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essarily I’ is the case. Does it follow that “Necessarily, Necessarily I’ is the
case?

Langford: That's a tough one, sir...

Reasoning in this way, the two men arrive at a system of axioms and rules of
inference that they think captures the English-language “necessity” and ‘possibility”’
modalities.)” How extraordinary that these axioms should coincide perfectly with
Kuratowski’s axioms for topological space!

In the topological semantics, a model consists of a topological space together
with a valuation function. Here formulas are true or false not at a possible world,
but at a point in a given topological space. The Boolean connectives are interpreted
injust the way you would imagine: a disjunction is true throughout the union of
the set of points where each disjunct is true; a conjunction is true throughout the
intersection of the set of points where each conjunct is true; and a negation is true
throughout the complement of the set of points where the negated formulais true.
The important clause, as always, is the modal one, and this is where the topological
semantics gets its name. The formula ‘D¢’ is true throughout the interior of the
set of points where "¢’ is true. We say that a formula is satisfed by the model if it
istrue throughout the entire space, and isvalidin the spaceifitis satisfed inevery
model defned over the space.'®

What these defnitions tell us is that each topological space picks out, seman-
tically speaking, some set of modal formulas —namely, the set of formulas thatare
valid in that space. In other words, to each topological space is associated some
collection of sentences in the given propositional modal language. But nowwe can
ask some fundamental questions: Do different topological spaces pick out different
setsofformulas? Moreover, isthesetof formulas picked outbyagiventopological
spaceaxiomatizable? Does it coincide with the theorems of any known axiomatic

In fact, of the fve axiomatic systems for modal logic that Lewis and Langford proposed, they
weresaid tofavorthesystem S2 asaformalization of the Englishlanguage ‘necessity’ operator.

¥More formally, in the topological semantics a model consists of a pair, h X, Vi, where Xisa
topological space and V : P —  (X) is a valuation function that assigns to each propositional
variable P some subset of the'space X. We extend the valuation function, V, to the set of all
formulas by the following recursive clauses:

VipVv ) =Vipu V(y)
Vi—p) =X @Vp)
V(D) = Int(V (¢))

We say that a formula, ‘@, is satisfed in the model if V(¢) = X. Finally, ‘¢’ is valid in Xif ‘¢’ is
satisfed in every model defned over X.

16
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Figure 4: A topological model in the real plane, R2.Here Pis true throughout the
disc; Qistrue throughout therectangularregion of space.

system? In particular, does it coincide with the theorems of S4? This last question
can be broken down into two more specifc ones: Is it the case that every theorem
of S4 is valid in the given space? And: Is it the case that every formula valid in
the space is a theorem of S4? Respectively: Is S4 sound and complete for the
topological space?

Soundness, you will have noticed, is had for free. Indeed, this is the real content
of the connection between the S4 axioms and Kuratowski’s axioms for topology.
The axioms of S4, interpreted topologically, just restate the conditions that a topo-
logical interior must satisfy in order to count as an interior operator at all. So of
course they are valid. But what about completeness? Here things are much more
complex. Completeness of S4 for a given topological space, X, is the claim that
every validity in X is provable in $4:

l=xp = “sa@
17



It is helpful to restate this claim in an equivalent way, by taking the contrapositive.
Thus, completeness says that if ¢ is not a theorem of S4, then ¢ is not valid in X.
In symbols,

6's4ap = |=xo
Putting things this way allows us to see that completeness is really a claim about the

fexibility of a given topological space — the availability, in that space, of a broad
enough class of refuting models.

In 1944, Tarski and McKinsey proved a very strong completeness result that is
sometimes called the Tarski Theorem, and which is in some ways the culmination

18



of their work on the topological semantics. The result is that S4 is complete for
any dense-in-itself metric space. (A metricspaceis a space in which we can defne
a distance function; a dense-in-itself space is a space where every point s the limit
of other points in the space.) Dense-in-themselves metric spaces include the most
familiar and widely studied topological spaces —for example, the real line (indeed,
any fnite dimensional Euclidean space), the rationals, Cantor space, and so on. If
we think of Euclidean space as our space, then the Tarski theorem says that S4 is
the logic of space as we know it.!?

1.5 Measure and probabilistic semantics

Tarski’s work is part of an algebraic tradition in modal semantics, in which formu-
las are interpreted not in relational structures, but in Boolean algebras with opera-
tors. The idea here was that just as classical propositional logic is interpreted, at the
most general level, in Boolean algebras, so too propositional modal logic should be
interpreted in Boolean algebras with operators that interpret the new modal sym-
bols. What kind of operators? The modal axioms of an existing axiomatic system
dictate what is needed. We saw that in the case of S4, the appropriate operator
was one that satisfes Kuratowski’s four axioms —or the algebraic version of those
axioms. But once we've put things in this general algebraic way, it’s clear that we
need not restrict our attention to Boolean algebras that arise, in the way described,
from pointed topological spaces. Indeed, we can interpret S4 in any Boolean alge-
bra together with an interior operator that satisfes (1*) - (4*).%°
What other algebras are of interest? Here we should recall the second of
the perspectives on the topological semantics mentioned at the beginning of this
chapter. Beginning with an interest in existing mathematical structures —namely,
topologies — we take interest in the topological semantics because it allows us to
describe these structures using modal languages. What we are interested inis, to
reiterate, such questions as: What logics do such structures give rise to? What is the
expressive power of modal languages vis-a-vis these mathematical objects? To

The Tarski theorem can be seen in botha positive and negative light. On the positiveside, it tells
us thatany dense-in-itself metric space has the resources to refute all non-theorems of S4. Viewed
in this way, the result is, again, a statement about the availability of counter-models in the given
topological space. Fixing a topological space, we can ask of interesting modal formulas, what do
such refuting models look like? What is their geometry, say, on the real line? On the negative side,
theresult groups together many differentspaces thathave quite different features. Tosay that S4 is
the logic of any dense-in-itself metric space is to say that as far as the sentences of the basic modal
language go, we cannot tell these spaces apart. This says something important about the expressive
power of the basic modal language, interpreted topologically.

20f course, there is no guarantee that this will yield a complete semantics, only a sound one.
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what extent can such languages describe and discriminate between different kinds
of topological spaces? This point of view is quite natural. Topologies are funda-
mental objects in mathematics, and the fact that we can talk about them in a formal
modal language is entirely non-trivial. Tarski’s completeness results show that S4
characterizes any dense-in-itself metric space —and in particular, Euclidean space
of any fnite dimension.

But Euclidean space has, in addition to topological structure, measure struc-
ture. Different subsets of the reals have different size or measure. This measure
structure is quite distinct from topological structure. Sets that appear large from a
topological point of view may be small, or insignifcant from a measure-theoretic
point of view. (Take, for example, the rationals, which are dense in the reals, but
have measure zero.) What if we could interpret modal languages in a Boolean al-
gebra that encoded not simply the topological structure of Euclidean space, but it’s
measurestructure?

1.5.1 Measure

To get a feel for measure, consider the following simple game. You have, in front of
you, a ruler which is exactly one meter in length. The left end of the ruler is marked
by a zero, and the right end is marked by a 1; points in between are marked by their
distance in meters from the left endpoint. Your opponent chooses a region of the
ruler, by specifying any set of points that she likes, and a dart thrower prepares to
throw one hundred darts at the ruler in sequence. Your job is to guess how many of
those darts will land within the region of the ruler selected by your opponent. The
closer your prediction is to the actual outcome, the more points you make in the
game. Assuming that the darts land on the ruler in a more or less random fashion,
what should your strategy be?

Here we can make a number of simple observations. If your opponent selects
any interval, then the probability that the dartlands in thatinterval is equal to the
length of thatinterval. So, for example, if your friend selects the interval L— 3], the
probability that arandom dart lands in the selected region is;* L1kew1se if your
friend selects some fnite union of disjoint intervals, say I 21 , 2], the prob-
ability that the dartlands in the selected region is equal to the sum of the lengths
of the intervals, or %. But what if the region selected is more complex? What if
your opponent selects, e.g., the collection of all rational points in the interval? Or
allirrational points? Is there a way of saying, for anyregion of the ruler, what the
probability of hitting that region is? Here we run into some practical obstacles.
For example, although your opponent would have no trouble naming the region of
the interval consisting of all rational points, there would be no way to determine —
indeed, nofactof the matter — whether the dartlanded in thatregion or not (given
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that the dart has non-zero thickness). Likewise for sets like the irrationals, the Can-
tor set, and so on. More troubling still, assuming the Axiom of Choice, there are
regions of the ruler that cannot even be named. This is because such regions are not
constructible — they cannot be picked out explicitly. Nevertheless, if we accept the
Axiom of Choice, such regions do exist. Is there a well-defned probability that the
dartlands in one of these regions??! What we are after here is a notion of measure.
Wewould like to know what proportion of the interval or the ruler is taken up by
any givenset, so that we can say what the probability is of arandom dartlanding
inthatset.

In 1901, H. Lebesgue defned what is now the standard measure on the real
line. He showed that while there isno way to defne a ‘nice’ measure on every
subset of the reals which extends the notion of length for intervals, we can defne
suchameasureonaverylargeand importantclass of subsets (the Borel subsets, or
more generally, Lebesgue-measurable subsets). Without going into the mathemat-

ical details, we can describe this measure by saying that it (1) extends the notion of
length for intervals, (2) is translation-invariant, and (3) is countably additive. In other
words, the measure of any interval is equal to its length; “pushing” a mea- surable
setup or down the realline does not change its measure; and the measure of any
countable union of disjoint sets is the sum of the measure of the individual sets.??
When we restrict Lebesgue measure to the interval [0, 1], as we've been doing,
this function captures the familiar notion of probability. The measure of a given
region of the interval is just the probability that a dart hitting the interval at random
lands in that region (leaving aside practicalities having to do with the thickness of
the dart). Itisimportant to note that there are many subsets of thereal interval [0,1],
which are non-empty but nevertheless have measure equal to zero. The simplest
exampleisasingletonset a, where aig any pointin theinterval[0,1] (see Note
22). Inthe game we described, the probability of hitting any one of these sets with a
dart is precisely zero. This does not mean that this event cannot occur. Events
which have probability, or measure zero, are not impossible; it is simply that no
fnite number, however small, can capture the likelihood of their

Mtis well-known that one needs the Axiom of Choice to prove the existence of non-measurable
subsets of the reals. Thus someone who denied the axiom could insist that all subsets that really
exist are measurable. Here one is reminded of Bill Clinton’s famous line: “It depends on what the
meaning of the word ‘is”is.”

“Thisalready allows us toanswer some of the questions posed above. The measure, for example,
of the set of rational points is precisely zero. Why? The measure of any individual point is the same
as the measure of any other (by translation-invariance). Moreover, the measure of an individual point
is zero, because if it were non-zero, any countably infnite collection of points in the real interval [0,
1]would haveinfnitely large measure (by countableadditivity)! Butif each pointhas measure zero,
thenany countable sethas measure zero as well (again, by countable additivity). Since the rationals
arecountable, the measure of therationalsis zero.
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occurrence.

From a measure-theoretic point of view, measure-zero subsets of the reals are
insignifcant. Taking this thought seriously, what if we were to literally ignorethe
existence of such sets? What if, in other words, we were to identify any two sub-
sets of the reals that differ from one another by a set of measure zero? Imagine,
if you will, that you have blurry glasses, and that these glasses do not allow you
to distinguish between such sets.?® Seen through these glasses, the real interval,
[0, 1], consists, for you, of some collection of blurry regions, each of which has a
precise measure (namely, the measure of any one of the sets which make up that
region). Formally, these regions make up a Boolean algebra: the algebra of all mea-
surable subsets of the real interval, modulo sets of measure zero. This is a measure
algebra —or Booleanalgebra, inwhich each elementhasameasurebetween0and
1.4 We call it the Lebesgue measure algebra.

1.5.2 Probabilistic semantics

The Lebesque measure algebra encodes information about the measure structure
of therealline. Justas we used Boolean algebras generated by topological spaces
to get a topological semantics for modal logic, Scott’s idea was to use measure
algebras to get a probabilistic semantics for modal logic. Formally, a probabilistic
model in the basic propositional modallanguageisa pair, hM, Vi, where M is the
Lebesgue measure algebra, and V: P_, is a valuation function that assigns
to each propositional variable some element of the algebra/. We would like to
extend the valuation function to all formulas in the language by a recursive truth
defnition. For Booleanconnectives, the defnitionsare straightforward:

V(pVv y) =V(p) Vv V(y)

V(—¢) = ¢V (o)
but how to interpret the D-modality? Here of course, we must construct an in-
terior operator on the algebrapbut we’ve said nothing at all about how to do
this. Indeed, how can we be sure that there isnon-trivial interior operator on this
algebra?

The key, again, is to consider the topological structure of the reals from an al-
gebraic point of view. Just as there are open subsets of real numbers, so too we
defne open elements of the Lebesgue measure algebra. We say an element of the
algebrais open if ithas somerepresentative which is an open subset of the real

PThe metaphor of seeing through blurry glasses is due to F. Artzenius. See (1).
*More formally, a measure algebra isa Boolean o-algebra witha positive, normalized measure.
SeeDefnition3.3.4below.
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interval, [0, 1] B Thus, for example, the element of the algebra corresponding to
any interval, or any fnite disjoint union of intervals, is open. (Take as your repre-
sentative set the interval without its endpoints.) But recall the interchangeability of
the two ways of defning topological structure described in Section 4.1. Once we
have open sets we have an interior operator, and vice versa. In topology, we defne
theinteriorofaset, A, astheunionof opensetscontainedin A:

{Copen | Cc A}

The algebraic analog of this topological defnition is not hard to fnd. Indeed,
we defne the interior of an element, q, in the Lebesgue measure algebra as the
supremum of all open elements dominated by a:

~ {copen| c< a}

(Oneof the deeplessons of Tarski'swork in thisareais that topological defnitions
are essentially algebraic, whether we focus on those conditions placed on open
sets or on an interior operator.) Completing the recursive defnition of truth for the
probabilistic semantics, we have:

V(D) = [V (e))

In the probabilistic semantics, we interpret the basic propositional modal language
in the modally-expanded Lebesgue measure algebra —or algebra together with in-
terior operator. Each formula is assigned to some element of the algebra, and thus
acquires the probability — or measure — value associated with that element. We say
thataformula’¢’ issatisfed ina probabilistic model if the value of that formula is
the top element of the algebra (i.e., V(¢) = 1.) Equivalently, ‘¢’ is satisfed if the
probability of ‘¢is1.

The modally-expanded Lebesgue measure algebra encodes information about
both the topological and measure structure of the real line. Other topological spaces
and measures give rise to different measure algebras. But now we can ask all of
the familiar questions that we asked about the topological semantics in this new
setting. Do different measure algebras give rise to different sets of validities? Is
the set of validities of the Lebesgue measure algebra axiomatizable? If so, does it
correspond to any known axiomatic system? In particular, does it correspond to
thetheorems of S4? Inother words, is S4 sound and complete for the probabilistic
semantics? At the time I began work on this project, these questions had not yet

“Note that the collection of open elements, so defned, satisfes the algebraic analog of the con-
ditions on opensets. In particular, the top and bottom elements of the algebra are open, the meet of
any two openelementsis open, and thejoin of anarbitrary collection of open elementsin open.
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been answered. Indeed, much of the work that occupies the chapters ahead is
devoted to settling some of the most pressing among them. The third and fourth
chapters, in particular, show that S4 is complete for the Lebesgue measure algebra;
that the probabilistic semantics can be extended to more complex, dynamic modal
languages, and fnally, that we get nice completeness results here too. Reading
between thelines, the reader will also discover whatI take to be something of an
analog to the Tarski Theorem in the measure-theoretic setting.

It is important, before getting lost in the mathematics, to reiterate two different
perspectives from which we might approach the probabilistic semantics developed
in these pages. On the one hand, one might take interest in the fact that we have
here a new semantics for existing axiomatic systems —one, moreover, with prob-
abilistic features that set it apart from other well-known semantics. This point of
view may be attractive to those philosophers dealing in the many formal areas of
philosophy which exploit probability theory for philosophical purposes. Indeed,
the new semantics provides a very general and fexible framework for attaching
probability values to formulas in rich, modal languages in a systematic way. Itis
not implausible to think that this could be of use in such areas as Bayesian epis-
temology and rational choice theory, where we model agents as having precise
credencesin propositions, and notjust full-fedged beliefs. Other applications may
be found in philosophy of language —in particular, where it comes to understand-
ing the various components of meaning in natural language. In an early paper
addressing such issues, H. Field argues that Popper’s probabilistic semantics for
classical logic can be put to that use. Indeed, Field understands agents as attach-
ing conditional probabilities to formulas in a classical language, and argues that
the conceptual role component of meaning should be understood in terms of these
probabilities. According to Field, two propositions, Pand Q, have the same con-
ceptual role for an agent, S, justin case for any proposition C,

Probs (P|C) = Probs (Q|C)

where Probs is the conditional probability function representing S's beliefs. Field
shows that Popper’s probabilistic semantics for classical propositional logic can,
with some effort, be extended to predicate logic. Although there are signifcant
differences between Popper’s semantics for classical logic and the probabilistic
semantics presented here, the latter does give us the tools to interpret not just clas-
sical languages, but rich modal languages probabilistically. The greater expressive
power of these languages, as well as the ease with which the present framework
can be exported to predicate and multi-modal settings, may prove useful to those
sympathetic to Field’s endeavor.?®

*See (12).
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On the other hand, one might approach the new semantics from a more math-
ematical point of view. Just as topologies are basic objects in mathematics, so too
are Borel measures. As we've seen, topologies together with Borel measures give
rise to modally-expanded measure algebras. To what extent can modal languages
describe, discriminate between, and express the various properties of these measure
structures? There is, in my view, no one correct way to think about the probabilistic
semantics: each of the perspectives announced here has its merits, and will, with
luck, yield new ways of developing the work begun here. But before launching
into that work, I want to briefy mention one surprising philosophical application.
The applicationisin the feld of metaphysics, or mereology.

1.6 GunkviatheLebesguemeasurealgebra

Space as we conceive of it in mathematics and physics consists of dimensionless
points. We typically describe not just positions in space, but trajectories, velocities
and accelerations in terms of three-dimensional spatial coordinates. Over the years,
however, some have sought to deny that points, or point-sized parts, are genuine
parts of space or matter. In the words of P.Roeper,

Points are not parts or elements of space; a point is a location in space. As a
consequence, points are not the primary bearers of spatial properties and spatial
relations, nor the primary objects of spatial mappings. This role belongs rather
to the parts of space.

According to what is sometimes called a‘gunky’ picture of space, space consists
of regions that can be arbitrarily small, but no region is literally dimensionless.
Space, on this conception, is not chunky —there are no smallest bits of space which
cannot be broken up further —but rather gunky — each region can be further broken
up into smaller regions. We can put this loose picture of space in the form of a
more precise mereological thesis:

GUNK (S): Every region (part) of space has a proper subpart.

The thesis as stated is a thesis about physical space. But there is, of course, a
parallel thesis about physical matter that could, in principle, be held independently
ofany view aboutspace:

GUNK (M): Every region (part) of matter has a proper subpart.
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It's easy to see that these principles rule out the existence of point-sized bits of
space or matter. As points in space are literally dimensionless, they cannot be
further broken down into proper subparts.?”

1.6.1 Motivations

There may be many motivations for adopting a gunky conception of space or mat-
ter, some more prosaic, and others reaching deep into phenomena in mathematics
and physics.?® Frank Arntzenius, for example, motivates a gunky conception of
time by reference to Zeno’s paradox, and argues as follows. Zeno argued that if
time consists of instants of zero duration, then an object is always stationary during
asingle instant of time. So an object is never in motion. But if objects are never in
motion, how do they succeed in moving?

Aristotle’s response to the paradox was to relinquish the idea that there are
zero-sized instants of time. Instants of time can be of arbitrarily small duration,
he thought, but no single instant has duration strictly equal to zero. Although this
move avoids the problem raised by Zeno, one might think that there are other, less
costly responses to the paradox. To be in motion, one might say, is just to be in
different locations at different instants of time. The fact that at a single point-sized
instant of time an object is stationary is not, on this response, a problem for the
possibility of motion at all. Stationary objects at single instants is just the stuff of
which motion is made.?” On this response, however, motion (or velocity) is not an
intrinsic property of the state of an object at a given moment. Indeed, motion as
conceived of here is a property that arises from the relationship between the state
of an object at one time, and the state of that object at past or future times. If that
is the case, it would seem wrong to say that the instrinsic state of an object (or of
all objects in the world) at any given instant determines the state of that objectat
future instants. In short, some form of physical determinism seems to be threatened
here. 30(1)

“One could, in principle, affrm one of these two theses about gunk and deny the other. Thus, one

could believe for example that while matter is gunky, space is not. Arntzenius and Hawthorne argue
against this sort of split position. “If we are to restrict the Difference thesis to material objects, we
need some reason for tolerating zero measure differences in the domain of spatiotemporal objects
while prohibiting them within the realm of the material. Weare notaware of any suchreason.” (2).
Inwhatfollows, we focus primarily on the thesis GUNK (S), but the reader whois interested only in
a gunky view of matter can make the appropriate substitutions.

*These arguments appear in (1), (2) and (35).

PThere is something bizarre, to my ear, about saying that an object is ‘stationary during a single
instant.” To be stationary, one wants to say, is to be in the same place across some stretch of time.

*One mightargue that the sortof determinism here threatened is too strong to be plausible. Why,
after all, should it be only the intrinsic properties of an object that determine its future states? On
the other hand, if motionisa product of the relationship between states of the objectat one timeand
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Another motivation for gunk, again discussed in (1), is more mathematical in
nature. Itis well known that if we admit points in space, then using the Axiom of
Choice, we can prove the existence of non-measurable subsets of Euclidean space.
The existence of such sets, however, leads to the Banach-Tarski paradox. What
Banach and Tarski showed is that we can divide a sphere in three-dimensional Eu-
clidean space into fnitely many parts (fve, to be precise), move these parts around
without stretching or deforming them in any way (thus, performing only rigid mo-
tions), and end up with a sphere that has twice the volume of the original. This
result is quite startling, and depends on the existence of non-measurable sets. (Re-
call that Lebesgue measure is translation-invariant. Thus some of the parts into
which we divide the sphere must be non-measurable.) One response to the para-
dox s, of course, to give up the Axiom of Choice. Without that axiom we would
not be able to prove the existence of non-measurable sets, and so we would not be
able to divide the original sphere into the kind of parts needed to get the paradox
going. But although the Axiom of Choice was initially greeted with controversy,
it is now accepted by practically all practicing mathematicians. Retaining all of
pointy mathematics while doing away with the axiom is not a realistic option. An-
other response would be to deny the existence of point-sized regions of space (or
matter). On this response, we can allow that points and the axiom have a role to
play in mathematics, but deny that they have a similar role to play in the correct
understanding of physical space and matter. In other words, we can preserve points
ina purely abstract, mathematical setting, while at the same time staving off the
ideathatasphere-shaped region of space or matter could be doubled atno cost.

These motivations do not form anything like a complete list, and even as they
stand are quite tenuous.’! Nevertheless, in the words of F. Arntzenius and J.
Hawthorne, “The idea that all physical objects are gunky seems suffciently sweep-
ing, interesting, and plausible that it is worth examining.” (2, p. 441)3?

1.6.2 The approach based on regular closed sets

Suppose then, for the moment, that space and/or matter really are gunky. The
question now arises: How should we model space mathematically? What model of
space respects standard mereological assumptions together with the gunky picture
of space sketched above?

states of the objectatfuture times, itseems wrong tosay that the state of motion of an objectatan
instantdeterminesfuturestates (whether ornotmotionisanintrinsic property). Itisin part the future
states, one wants to say, thatmake up motion tobeginwith.

3For a much more thorough discussion of motivations, see (1).

#Here the gunk thesis is defended for physical objects, but as we saw above, Arntzenius and
Hawthorne do not think it plausible to adopt a gunky conception of matter together with a pointy
conception of space. See (2).
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This challenge —as well as the traditional response to it—is most famously as-
sociated with A.N. Whitehead. As early as the 1920’s, Whitehead was investigating
the possibility of doing geometry without points. The idea was, as Biancino and
Gerla point out, to conceive of “axiomatic systems in which the concept of a point
is defned from primitive terms more easily interpretable in nature.” ** Whitehead
took as a topological primitive the notion of two regions being connected. Intu-
itively, a region A is connected to B if A and B overlap, or at least share some
boundary point. In 1929, Whitehead showed that his axiomatization of this rela-
tion was satisfed in regular closed algebras (defned below), and that one could
use such algebras to model pointless geometry. Points, lines and surfaces were
constructed as mathematical abstractions on these algebras of solid regions.

Recall that a reqular closed set is a set that is equal to the closure of its own
interior. In symbols:

A = Cl(Int(A))

where the closure of a set is the set together with its topological boundary. The
simplest example of such sets is a closed sphere in n-dimensional Euclidean space.
(Theinterior of thesetis the opensphere, and the closure of theinterioris the orig-
inal, closed sphere.) ** The algebra of regular closed sets can be constructed from
the collection of all subsets of a topological space in the following way. Starting
with the set of all pointy subsets of a space, we write A Bif the closure of the
interior of Ais equal to the closure of the interior of B. Itis not diffcult to see that
the relation’. so defned, is an equivalence relation. Taking equivalence classes
we get a Boolean algebra in which each element of the algebra has exactly one
regular closed representative — that set equal to the closure of the interior of any set
intheequivalenceclass.®

Modeling gunky space in regular closed algebras brings with it many advan-
tages. The Boolean structure of the algebra satisfes standard mereological as-
sumptions, which we do not repeat here.*® Moreover, the regular closed algebra

BSee (6), p. 431.

#For an example of a closed set in one-dimensional Euclidean space that is riot a regular closed
set, consider the Cantor set. This sethas no interior, so the closure of its interior is empty.

BOperations in the algebra of regular closed sets are defned as follows:

aA b= Cl(Int(An B)
aVb=AUB
9a = CiX @A)
where Xis the entire space, Aand Bare regular closed subsets of X, and aand b are the corre-
sponding elements of the algebra.

%In fact, standard mereology does notadmita null element, whereas such an element is present
inthealgebra of regular closed sets.
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that arises from fnite-dimensional Euclidean space (indeed, from any Hausdorff
topology) is non-atomic: every non-zero element in the algebra dominates some
other, non-zero element. More formally, for every non-zero element a in the alge-
bra, there is an element b such that 0 < b < a. In words, every region of space
has a proper subregion. This fact about regular closed algebras is precisely what
is required by the thesis GUNK (S) given above. But, as J.S. Russell points out,
Whiteheadian space is not just mereologically distinctive, but also topologically
distinctive. To see this, let us say that a region x is an interior part of y if x y,
and xis not connected to any region disjoint from y (where two regions aand b
are disjoint if there isnoregion thatis part of both). Then in Whiteheadian space,
every region has an interior part. Russell calls space that satisfes this condition
‘topologically gunky.” Ashe argues, “Topological Gunk is a natural extension of
Mereological Gunk: not only does every region have a proper part, it has a part
which is strictly inside of it.”%

More recently, however, powerful arguments have been leveled against theidea
of interpreting space (or at least actual, physical space) in regular closed algebras.
These arguments stem from diffculties associated with defning a reasonable mea-
sureonthealgebra. Indeed, the gunk theorist would like to be able to talk notjust
about mereological structure, but also about the size of various regions of space.
Ideally, he would like to be able to say, of any region of space or matter, what the
size of that region is. Moreover, in keeping with the spirit of gunk, many gunk
theorists would add that no region of space has size equal to zero. We can put these
desiderata concerning size in the form of two additional theses:

SIZE: Every region (part) of space has a precise size.
NO ZERO: No region (part) of space has size equal to zero.

The notion of size in play here is not one of, e.g., cardinality. In talking about
the size of a region, we distinguish between, e.g., the size of a cone that is one
meter tall, and a cone that is 100 meters tall, each with the same base. In fnite-
dimensional Euclidean space, itismost natural to take the size of aregion tobeits
standard Lebesgue measure.

Letusthenrestrictourattention toasimple case: therealline (or one-dimensional
Euclidean space). How to constructa measure function on the algebra of regular
closed subsets of this space? As we noted already, each element in the algebra
contains oneregular closed representative set. Since this setis Borel, itis measur-
able. Thus we can assign to each element of the algebra the Lebesgue measure of
itsuniqueregular closed representative. But hereis where we runinto diffculties.

¥See (35), p. 6.

28



The measure of a countable fusion (or, in algebraic terms, join) of disjoint regions
of space should equal the sum of their individual measures. This is the principle
of Countable Additivity. But the measure function just defned violates this con-
straint. To see this, consider a thick, or ‘fat’, Cantor set. We construct the set in
stages, starting with the real interval, [0, 1], and at the frst stage of construction,
removing the open middle 4Lof that interval. We are now left with the intervals
[0, %] and [58 1]. Atthe second stage of construction, we remove the open middle

Lof these remaining intervals. In general, at stage n we remove the open middle
(]%)” *lofallremaining intervals from the previousstage(n > 0).3® 3 The sum

of the measures of the removed intervals is
N
4 4 2
n=0 n=0
but the union of these intervals is equivalent, in the algebra of regular closed sets,
to the entire interval, which has measure equal to 1.

How serious a problem is this? Unfortunately, moving to a different measure
on the algebra will not help matters. It can be shown that any measure defned
onevery element of the algebra of regular closed subsets of reals is not countably
additive. We could, perhaps, look to measures that are only defned on some ele-
ments of the algebra, but even this does notlook promising. After all, we mustat
the very least have measures for intervals, and there really is no natural alternative
to identifying the measure of an interval (or an element of the algebra represented
by an interval) with its length. But the example just given shows that already at
the level of intervals, countable additivity fails. It seems right to conclude with
F. Arntzenius that “our attempt to do physics in this kind of pointless topological
space is in big trouble. (1, p. 18)

1.6.3 The measure-theoreticapproach

Inrecent work, Arntzenius proposes an alternative, measure-theoretic approachto
modeling gunky space, which makes signifcant revisions to Whitehead’s pro-
gram.40 Arntzenius, like Whitehead, takes as primitive a relation of ‘connected-
ness’ among regions of space, but his aimis to allow for models in which we have

®The set constructed here is the complement of the Smith-Volterra-Cantor set, and has measure
5 This isnot mandatory. An easy manipulation of the lengths of intervals in the construction yields
a Cantor set of measure arbitrarily close to zero or one. For a fuller discussion of the Smith-Volterra
Cantor set, see(42).

¥The intervals removed are open intervals, as is standard in the Cantor construction. But of
course, each such interval is identifed in the algebra with its closure, which is a regular closed set
and has the samemeasure.

“See (1).
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aworkablenotion of measureaswell. On Arntzenius’sapproach, instead of iden-
tifying sets in pointy space if the closures of their interiors are equal (as we do in
thealgebra of regular closed sets), weidentify sets that differ from oneanotherbya
set of Lebesgue-measure zero. Thus gunky space is modeled not via algebras of
regular closed sets, but via measure algebras arising from pointy topological spaces
together with Borel measures. To simplify matters, let’s focus for the moment on
one dimensional Euclidean space with standard Lebesgue measure. The algebra
correspondingtothisspaceisjustthe Lebesguemeasurealgebradefned above — the
verysamealgebraused to givea probabilistic semantics for modallanguages. The
frst thing to note is that in this algebra individual points disappear. Indeed, individual
points have measure zero, so modulo measure zero any singleton setis identifed
with the empty set, and so represents the bottom element of the algebra.*! Moreover,
like the algebra of regular closed sets, the Lebesgue measure algebra is atomless:
every non-zero element of the algebra dominates some other, non- zero element.
Again, this means that our model satisfes the thesis GUNK (S) given above.
These two facts are no doubt congenial to a gunky point of view. Butthereal
advantages in turning to the measure-theoretic approach are that here, unlike in
Whiteheadian space, we can defne a workable notion of measure. Indeed, since
representative sets in a given equivalence class in the algebra differ from one another
by asetof measure zero, we can defne the measure ofanelementin thealgebrato
be the measure of any of its representative sets. This measure functionis countably
additive. Moreover, only the bottom element of the algebra — thatelement
represented by the empty set —has measure zero. Inwords, every regionof space
has a precise size, and no region, except the null region, has size equal to

zero. So far, things seem quite promising.

But in addition to mereological and measure structure, we would like space to
have topological structure, and here is where certain complications arise.*? Stan-
dard topological structureis, as we know, defned in terms of a collection of prim-
itively distinguished open (or closed) sets (a closed set is the complement of an
open set). In Euclidean space, for example, basic open sets are open spheres, or
spheres without any of the points on their surface. But according to Arntzenius,

Hawthorne, and Russell,*, the distinction between open and closed sets isone

“IMore generally, for any point, a,and subset, A, of Euclidean space, the sets Aé{a} and A g
are equivalent in the Lebesgue measure algebra.

“Itake mereological structure to be Boolean structure, or thatstructure captured by the ordering
relation, ‘£ on the algebra. A more careful presentation of this material would state explicitly
which mereological assumptions are made, but in this short introduction we do not have the space to
spell out the details. For a fuller discussion, see (35).

#See (1), (2), and (35).
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which cannot be made in the setting of the Lebesgue measure algebra:**

“Mathematical orthodoxy casts topological structure in terms of primitively dis-
tinguished open point-sets. But among the spaces we are concerned with here
are those that make no distinction between closed and open regions; so the or-
thodox approach won'tdo.” (35, p. 253)

“The topological structure we will give pointless regions can not be given in the
same way that we gave pointy spaces topological structure, namely in terms of
a distinction between open and closed regions. For that is exactly the kind of
distinction that we do not believe exists if reality is pointless. ” (1, p. 237)

Why is it that, according to these philosophers, there can be no distinction be-
tween open and closed regions on the measure-theoretic approach to gunk? Many
opensets differ from their closure by a set of measure zero (where the closureof a
set is the smallest closed set containing it). Consider, for example, any open inter-
val. This set differs from its closure only at the endpoints. If sets of measure zero
donotexist, then the distinction between such an open set and its closure would
seem to collapse: these two regions of space could not be told apart. The con-
clusion these authors have drawn is that if we are to have topological structure on
the Lebesgue measure algebra, it must be topological structure of a non-standard
variety — topology done, not in terms of primitively distinguished open (or closed)
sets, but in terms of other primitive notions that do not rely on the existence of
points or sets of measure zero.

The adoption of non-standard topological primitives is not itself anything new.
Indeed, Whitehead did this in 1929, when he took as primitive the binary relation of
‘connectedness,” and used this to axiomatize all of pointless geometry. Some years
later, A. Grzegorczyk assumed as primitive therelation of being separated,
providing anaxiomatization of that relation which allowed him, like Whitehead, to
defne points.*> More recently, and in the same tradition, P.Roeper takes as
primitive both the relation of connectedness and the property of being limited, and
axiomatizes these notions by way of defning what he calls ‘region-based topol-
ogy."%® In taking the relation of connectedness and the property of being limited as
primitive, Arntzenius attempts to show that the measure-based approach can, in

*“One should be careful not to read too much into talk of the distinction between open and closed
sets. Depending on the topological space, we may have sets that are both open and closed. Finite-
dimensional Euclidean space (R") is connected, and so in this special case there are no sets of this
kind. In general, however, thisis not the case.

See (14).

*See (34).
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some sense, mimic the topological structure that Roeper gives for Whiteheadian
space: that Roeper’s axioms are satisfed not just in regular closed algebras, but
also, toalarge degree, inmeasure algebras.?”

But is the turn to non-standard topological primitives necessary in the measure-
theoretic setting? Let us re-examine the arguments given against standard topolog-
ical structure in more detail. As Arntzenius and Hawthorne argue:

“...When No Zero is combined with our mereological assumptions, further re-
sults follow. In standard point-set topology, we can distinguish an open region
from its closure. Typically, each has the same volume, since the latter differs
from the former only by including the boundary points of the former. Can the
Gunk lover admit a distinction between such closed and openparts...?

Assume for reductio there is some open piece, call it "Opern’, that is a proper
part of some closed piece, call it "Closed’, each of the same volume. Remain-
der* tells us that there will be a part x of Closed that does not overlap with
Open, such that Closed is the fusion of xand Open. Assuming Finite Additiv-
ity, it follows that x has zero measure, violating No Zero. So, once No Zero
is assumed, we cannot admit the standard distinction between open and closed
regions.” (2, p. 443)*

Summarizing the argument: Because in many cases an open set differs from its
closure by a set of measure zero, there can be no distinction between open and
closed regions.

Inow want to argue that such arguments fall fat. While turning to non-standard
topological primitives makes sense in the context of Whiteheadian space (where in
some sense every element is open, and there are no boundary regions), this is not
the case for the measure-theoretic setting, where space is not topologically dis-
tinctive in the same ways. Of course, in the Lebesgue measure algebra, there is no
distinction between sets that differ by a set of measure zero. So if an open subset of
therealsand its closure have the same measure, then these two setsareidentifed.
This is the case for many familiar subsets of the real line: for example, any interval,
or fnite union of intervals. But it does not follow that we have to throw out the
distinction between open and closed regions altogether. In the measure-based se-
mantics for modal languages, we defned an open element of the Lebesgue measure

“For Roeper’s axioms, see Appendix A.

“The Remainder principle states: If xis a part of y and notidentical to y then there is some zthat
ispartof ythatis discrete from x, such that yis the fusion of xand z(where xis discrete from yiff
thereis no part that xshares with y).

“My emphasis.
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algebra to be any element that has an open representative, or representative that is
an open subset of the real interval, [0,1]. Likewise, let us defne a closed element
of the algebra to be the Boolean complement of an open element.”’ An immediate
question presents itself: Are there any elements of the algebra that are not open?
(Equally: are there any elements of the algebra that are not closed?) Consider the
thick Cantor set mentioned above. The element of the Lebesgue measure algebra,
¢, corresponding to this setisnotopen. Indeed, asweshow in Chapter 2, the thick
Cantor set differs from every open subset of reals by a set of non-zero measure.
Moreover, the same example shows that there are open elements of the algebra that
are not equal to their own closure. Indeed, the complement of cis an open element
of the algebra that has measure strictly less than 1,°! and its closure is the top ele-
ment in the algebra. Here, then, we have a non-trivial algebraic distinction between
open and closed regions of space: precisely the sort of distinction with which to do
standard topology.
One may object at this point that the thick Cantor set and its complement are
rather special sets. “ According to the defnitions given,” you say, “mostelements of
thealgebra are both openand closed and so the distinction between ‘open’ and
‘closed” in the algebra cutslittle water.” There are two ways torespond. First,
althoughitis truethatmany of the opensubsets of therealline thatwetalkaboutin
mathematicsdiffer fromtheir closure by asetof measure zero (henceareidentifed
with their closure in the Lebesgue measure algebra), the sets that we tend to talk
aboutare a very restricted few. By necessity, such sets are ones that can be simply
described. But limits on our discursive powers should not mislead us as to the
variety of subsets of the real line. There are many sets that we are not accustomed to
talk about because they are not easy to defne, but which exist all the same. (Ina
certainsense, eventhe thick Cantor setis quite simple. Ithasa very regular, fractal
structure.) So while it may be true that for many familiar subsets of the real line,
the distinction between closed and open collapses once we move to the Lebesgue
measure algebra, there is, I think, no sense to the notion that ‘most’ subsets are
like this. But second, if space really is pointless, then we should expect to modify
our view of space in sometimes signifcant ways. The distinction between simple
openregions of therealline (e.g., intervals) and their closures must, of course,
fall by the wayside. Another way to putthefactthatsuchregions donotdiffer
from their closure, is to say that they have no boundary. Now the boundary ofan
openintervalinthereallineisjustthe endpoints of theinterval. Surelyona
gunky conception of space —a conception of space on which there are no point-

MEquivalently, a closed elementis any element thathasa closed representative, or representative
thatisa closed subset of the real line.
*'Hence, the complement of c is not equal to the top element in the algebra.
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sized parts —we should deny that such regions exists. But unlike in Whiteheadian
space, there are regions of space that are properly called ‘boundary.” Indeed, the
thick Cantor setis one example. It has non-zero measure, and yet has no interior.
On the measure-theoretic approach to gunk, this result is quite welcome. It is not
that boundary regions do not exist, but rather that true boundary regions —regions
thatdonotsimply consistof theendpoints of intervals — are quite special.

Still, many questions remain. Arntzenius and Roeper take as primitive the rela-
tion of connectedness and the property of being limited. These notions have some
intuitive appeal. It would be nice if we could reproduce them in the measure-
theoretic setting without taking them as primitives —either by defning those rela-
tions in terms of the open-closed distinction, or by adding additional topological
structure to our measure models. In Appendix A we suggest a way to this this
according to the second approach. (By the isomorphism results of Chapter 4, the
frst approach will not work.) Further questions concern our ability to extend these
defnitions to reduced measure algebras that do not arise from Euclidean spaces.
Unfortunately, we do not have the time or the space to pursue those questions here.
I hope, at any rate, that these loose remarks point in a direction in which this work
will be furtherdeveloped.

1.7 Game plan

The dissertation is organized as follows. In Chapter 2, we develop in detail the
topological semantics, and show that Tarski’s completeness result for the real line
can be proved in a simplifed way, using well-known fractal curves. In Chapter
3, we develop the probabilistic semantics, and prove that S4 is complete for this
semantics. Also in this chapter, we show that intuitionistic propositional logic
(IPC) is complete for the subframe of open elements in the Lebesgue measure
algebra. In Chapter 4, we show that the probabilistic semantics can be extended to
dynamic topological logics —or multimodal logics intended to describe dynamic
spaces. Here we prove that S4 Cis complete for the probabilistic semantics and
develop some interesting isomorphism results that allow us to extend completeness
to other measure algebras. The reader interested in some, but not all, of the results
that follow is invited to skip ahead to the relevant chapter. Individual chapters are
written so as to be readable independently of one another.
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Chapter 2

Topological Semantics for Modal
Logic: The Tarski Theorem
Reproved

Abstract. This chapter explores the connection between fractal geometry and
topological modal logic. In the early 1940’s, Tarski showed that the modal logic
S4 can be interpreted in topological spaces. Renewed interest in Tarski’s topolog-
ical semantics can be seen in such recent papers as (5), (18), (39), and (40). In this
chapter we introduce the use of fractal techniques for proving completeness of S4
and non-trivial extensions of S4 for a variety of spaces in the topological semantics.
These techniques are developed to relate the somewhat peculiar non-Hausdorff tree
topologies with more familiar Euclidean and other metric topologies. The main re-
sults of the chapter are completeness of S4 for the binary tree with limits, and
completeness of S4 for the Koch Curve, a well-known fractal curve. An important
corollary is a new and simplifed proof of completeness of S4 for the real line, R
(originally proved by Tarskiand McKinsey in (27)).
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2.1 Introduction

!In the late 1930’s, Tarski developed a topological semantics for modal logic in
which formulas are interpreted in topological spaces. In a topological model, each
propositional variable, P, is assigned to an arbitrary subset of a given topological
space —the set of points where P is true. Conjunctions, disjunctions and negations
are interpreted as set-theoretic intersections, unions and complements; the “neces-
sity,” or “D’-modality is interpreted as a topological interior operator. (Thus, ‘D¢’
is true throughout the interior of the set of points where ¢’ is true.) Although this
semantics was largely forgotten in the years since Kripke’s relational semantics
was introduced, the last ffteen years have witnessed a burst of renewed interest.
Indeed, researchers have come to see Tarski’'s work as the foundation of the much
broader project of using modal logic to describe space and spatial structures. As
early as 1944, Tarski and McKinsey showed that the modal logic S4is sound and
complete for any dense-in-itself metric space (27). Their proof was notoriously
complex, and in recent years, completeness for the special case of the real line was
reproved in such papers as (5), (18), (26), (29), and (38). In this chapter, we ex-
plore new, fractal techniques for proving a variety of completeness results in the
topological semantics.

The main result of the chapter is a proof of completeness of S4 for the Koch
Curve, awell known fractal curve. Animportant corollary is anew proof of com-
pleteness of S4 for the real line, R. The fractal techniques introduced in these
proofs are, as we argue, the chapter’s main contribution to the topological seman-
tics for modal logic. The results of Section 4 and the techniques developed be-
low are not tailor-made for solving completeness of S4 for the real line or for the
slightly wider problem of completeness of S4 with respect to interesting classes
of metric topological models. The main technique is developed to relate formally
the somewhat peculiar non-Hausdorff tree topologies with more familiar Euclidean
and other metric topologies. As we will see, completeness is transferred from an
appropriate tree to a metric space by means of a known fractal curve. Complete-
ness for both the Koch Curve and R are best seen as examples of the power of the
fractal techniques introduced.

The chapter is organized in fve sections. Section 1 introduces the basic propo-
sitional modal language and Kripke (relational) semantics, and recalls some basic

completeness results. Section 2 demonstrates the use of trees as Kripke frames,
and shows that S4 is complete for the infnite binary tree. Section 3 explores the
topological semantics for the modal language, introduces the complete binary tree

!This chapter is aslightly modifed version of a paper co-authored with Darko Sarenac, “Fractal
Completeness TechniquesinTopological Modal Logic.” See (23).
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(or infnite binary tree with limits), and shows that S4 is complete for this tree. Sec-
tion 4 is the part of the chapter where we prove our main results. In this section we
introduce the Koch Curve, and simultaneously prove completeness of S4 for the
Koch Curve and for the real interval [0, 1]. The reader familiar with modal logic
can skim through much of Sections 1 and 2. Furthermore, the reader familiar with
Tarski’s topological semantics can leaf through all but the proof of completeness
of S4 for the complete binary tree in Section 3. If the reading seems somewhat
terse in places, suffcient background information can be obtained by reading the
excellentand very currentsummary of the state of topological modal logic in (40).

2.2 Kripke semantics for 54

2.2.1 Language, models, and truth

Let the modal language L consist of a countable set, P = {F; | for all i € N},
of atomic variables and be closed under binary connectives —, V, A and unary
operators —, D, 3.

A frame is an ordered pair, F = hU, Ri, where U is a set of points called the
universe, and R is a binary relation on U. We say F is transitive (refexive) if Ris
transitive (refexive). We interpret L in a model M = hF , Vi, where F is a frame,
and V: P _, (/) is a valuation function.

Formulas are interpreted on points g U and we write M, x = ¢ to mean
that in the model M at the point x, ¢ holds. More specifcally for a model M =
hhU, Ri, Viand a point x € U, the ternary relation M, x |= gis interpreted induc-
tively asfollows. For P€ P,

M x|=P< xe V(P)

Mx|=(pVy)e M,x|=por M, x|=w

M x|=-p< M, x|=¢

M, x|=D@p < M, y |= ¢ for all y such that Rxy
M, x|=3¢p < M,y |= @for some ysuch that Rxy.

The interpretation for A, — and < can be obtained from the above via the
standard defnitions. We could have defned 3P as-D-P but the defnition was
added for the completeness of presentation.

Defnition 2.2.1 (Logic S4). The modal logic S4 in the language L consists of
some complete axiomatization of classical propositional logic PL, some complete
axiomatization of the minimal normal modal logic K, say the axiom:

37



C:(DPADQ) - D(PA Q)

and the rules:
RN: " @ = "~De, and
RM: ¢p—-w=> " Dcp—»Dl,u;2

and, fnally, the special S4 axioms:
4:DP~- DDP
T:DP— P

We defne standard validity relations. Letf = (U, R) be a frame, and let
M= ( g V) be amodel over F. For any formula ¢ L, we say @ is truein M
if M, x 5 pforallx ¥ Wesay gisvalidin ifgpistrue in every model over
F. If & a class of frames, we say ¢ is valid in @f ¢ is valid in every frame in .
Finally, the logic S4 is complete for (if every formula valid in is a theorem of
S4 (i.e., can be derived from the axioms together with the rules of inference). With
slight abuse of notation, we will sometimes say that S4 is complete for for a single
frame F, where we mean S4 is complete for{F}.

2.2.2 Kripke’sclassiccompletenessresults

Defnition 2.2.2 (Rooted Frames and Models). A rooted (or pointed) frame is a
triple, F = (U, R, x), where (U, R) is a frame, x € U, and forally € U, (x, y) €
R.

That is, the point xis R-related to every other pointin U (or x “sees” allg U,
for short).

Theorem 2.2.3. [Kripke]

The modal logic S4 is sound and complete for (i) the class of all transitive,
refexive frames; (ii) the class of all fnite transitive, refexive frames; (iii) the class
of all rooted, fnite, transitive, refexive frames.

We will not reproduce this classic result here. Most standard introductory pre-
sentations of modal logic contain proofs of (i), (ii), and (ii7). For Kripke’s original
proof werefer the reader to (20); for a more contemporary variant, see (7).

*Thissomewhatunusual axiomatization of Kand hence of S4 makes the topological connection
introduced later onin the chapter more explicit. Cinterpreted topologically states that the intersec-
tionof opensis open, RN states that the universeis open, RM states thatif Pisasubsetof Q, then
the interior of P is a subset of the interior of Q. Furthermore, T states that the interior of P is a subset
of P,and, fnally, 4, together with T, states that the interior of the interior of P is just the interior of P.
This should strongly remind the reader of Kuratowski's axiomatization of the interior operator.
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In the next section we recall that the infnite binary tree, T2, with a transitive,
refexive relation, R2, can be used to build models for the modal language. Indeed,
the logic S4 is complete for the class of models over the frame T2: a modal for-
mula @is a theorem of S4 if and only if it is valid in every model over T2. Below,
we show how to view T2 (and, for that matter, any transitive, refexive frame) asa
topological space. We then introduce an uncountable topological extension of T2
thatwe call T;. This new structure extends T2 by adding to it uncountably many
“limit nodes,” corresponding to each (infnite) branch of T2. Our main contribution
to the theory of tree topologies is the proof that S4 is complete for 'E+. As we
mentioned above, the signifcance of T2+ for us lies in large part in its use in ex-
tending topological completeness results to various metric and fractal spaces. We
startwith a brief discussion of T2 viewed as arelational frame.>

2.3 Infnite binary tree

2.3.1 Themodalviewoftheinfnitebinarytree, T

Let 2 = @, 1 jand let Z* be the set of all fnite strings over Z including , the
empty string.' Let Z° be the set of all countably infnite strings over Z, and let
t=3% 39 Forx,y &% letx y denote the concatenation of x and y.
We will also write xy for x4y. Concatenation is further defned for x X* and
Yy € 2% butnot for x, y 2°

Note that 2* is closed under concatenation, that is, if & y Z* theg.x y Z*.
Similarly, Z* is closed under “right-concatenation” in the following sense: for
xeZ¥ye2fhx y Th

We let si: 2% Z*for i ¢ @, 1 jbe the function defned by si(x) = x i
Thus for example sp(1) = 10, and s1(110) = 1101. We call so(x) the “left
successor” of x and s1(x) the “right successor” of x.

We can now defne the binary relation R2 on £* as the transitive refexive
closure of sp U s1 (Where s;jis viewed here as a relation, rather than a function).

Defnition 2.3.1 (T2, a modal frame). T2 = hZ*, Ry, h-ii

We call T3 the infnite binary branching tree or full binary tree. We call the
empty stringy,, jthe root, and for any x T2, so(x) and si(x) are called the
immediate successors of x. For simplicity of notation, we will often leave out the

root, h-i, denoting T2 by h=*, Rui.

3The formal details of the next section follow the presentation in (40). The details can be skipped
by a reader familiar with the notion of tree unravelling.
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Fact 2.3.2. Every node x is accessible from the root in fnitely many steps along
R2 and hence in one step by transitivity. Every x T2 has exactly two immediate
successors and countably many successors altogether.

A valuation function V : B f2*) defnes a model 2 over T>. Since T2 is
transitive and refexive any such model validates the S4 axioms—i.e., $4 is sound
for T>.

Claim 2.3.3. For any fnite, transitive, refexive, rooted, model M , with root x,
there is a valuation V over T2 such that,

Mx|=p < hTy, Vi, h-i|=¢
for every @ € L.

(The proof of the claim is postponed until the next section.)

It follows from Claim 2.3.3 and Theorem 2.2.3 that every nontheorem of S4
can be shown false on some model based on the frame T>. Indeed, if @ is not
a theorem of S4, then by Theorem 2.2.3, there is some fnite rooted frameg =
H, R, x iand valuation V such that hE v, = But then by Claim 2.3.3,
there is a valuation V % over Ty such that T2, Vi E . Thus any nontheorem
fails on T2, and $4 is complete for the class of models over T>.

2.3.2 Building a p@morphism from T, onto fnite Kripke frames

We prove Claim 2.3.3 by constructing a_p morphism f: T2, F, where =
(U, R, x) is a fnite, rooted, transitive and refexive frame. We briefy recall the
notion of p@morphism.

Defnition 2.3.4 (p-morphism). Let F = hU, R, xri and F! = hu', R, i be
rooted frames. A p-morphism from F to F'is a function f : U — U satisfying: For
any x, Yy € Uand y € U',

(i) flxr) = X

(ii) If Rxy, then fIx)R fy);

(iii) IfROﬂx)yO, then there isa z ¢ U, Rxz and f(z) = yo.
We say that fis a surjective p-morphism if, in addition, f{U) = U,

Fact 2.3.5. If there is a surjective p@morphism f from F to F', then for any

valuation function V : P — BUY), any point x U, and any modal formula ¢, we
have:*

“The function [fél] : P(U% — P(U) raises the type: for A < U, [fo'](A) ={yl fly €
A}. Note thatalthough f ¥lig likely nota function, [fm] isalways a function, but of a higher e
Thus, the function [f®] o V : P — P(U), i.e., itis a valuation function.

40



hF, [0 Vi,x = ¢ & hF", Vi, ) |= ¢

Thus, to prove Claim 2.3.3 it suffces to show that for any fnite, transitive, refex-
ive, rooted frame F = hU, R, xi, there is a surjective p@morphism f from T> to
F.

Let the cardinality of Uin g be n. Notice that no point in U has more than
ndistinctsuccessors and x, theroot, actually has nsuccessors. Wenow construct
the function f. For 1_ i_ n(= U)), we defne the set of functions si: U_, U
(1 i p).Foreachy U, the function sjchooses the ith distinct R gSuccessor
of y, if such a successor exists. Otherwise si(y) = y. More formally,

Defnition 2.3.6 (Successor functions sj). For all y, s1(y) = y (s1 is the identity
function). Fix i € N, and suppose that s1(y), s2(y), ..., si¢1(y) are already de-
fned, and that Rysi(y) for all k < i Then we let siy) be some z € U such that
Ryz and si(y) 6= z for all k < i, if there is some such z. Else, si(y) = y.

Example 2.3.7 (A set of successor functions). Letgy U have 3 distinct successors
including y itself: y, w and z and no others. Then iff § = 5, we let s1(y) = y,
s2(y) = w, s3(y) = z but sa(y) = ss(y) = y as we have run out of distinct
SUCCessOrs.

Defnition 2.3.8. [UNRAVELING p NyORPHISM]

We defne a linear ordering on the nodes in T2. This can be done in many ways,
but for specifcity, we let, e.g.,, h-i <0 <1 <00 <01 <10 <11 <000 <...
[BASE STEP.] Firstlet f(h-i)= x.

[RECURSIVE STEP.] Until fis defned for all nodes in T», fnd the least nole t
such that f(t) is defned, but neither f{t x0) nor f{t 1)isdefned. Assume that
SfTt) = y. Then let,

ftx1) = s1(y), Atx01) = s2(y), At+001) = s3(y), ... Atk0"¥x1) = sp(y)
where 0" is a sequence of n @ 1 zeros. Finally, let,
At*x0)=f{t*00) = ft*000)=..=ft*x0") =s1(y) =y.

Lemma 2.3.9. [Unravelling Lemma] Let f be the function defned in Defnition
2.3.8. Then fis a p€morphism.

°On the ordering just given.
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Figure 5: The recursive step of the defnition of the g morphism f. Her¢ U =5,
S =y si(y) =y, s2(y) = y1, s3(y) = y2, s4(y) = y3, and s5(y) = y4.
Following the defnition, f (tx 01) = y1, f(tx001) = y2, f(¢t 0001) =
y3, f(t00001) = y4, and all other points visible in the diagram are labeled y.
No successor of texcept for the elevennodes (really ten and t) explicitly shownin
thediagramislabeled at thisstage.

Proof. (i) It suffces to show that if Ryst and ¢ is the immediate successor of s,
then Rf(s)f(t). This can be seen by inspecting the recursive step of Defnition
2.3.8. If f(s) = y, then f(?) is si(y), for some i ¢ g, ..., m, but, by defnition
of sj, we know Rysi(y) for each such i (ii) We need to show that if Rf(t)z, then
there exists s - T2 such that Raots, and f(s) = z. We let f (¢) = y and recall
that s1(y), s2(y), ..., sn(y) exhaust the distinct R successors of y iz . Then
for some i é, ., N, si(y) = z. If t was ever the least node satistying the
antecedent conéition of Defnition 2.3.8, then some successor of t was labeled by
si(y)—i.e., by z. Otherwise, t is a successor of some other node £, which did at
some stage satisfy the antecedent condition of Defnition 2.3.8 and t = £ 4 0¥ for
some k < n. But then, at that stage, for some successor & of t f (tm) = y and
& 4u was undefned for any nonempty fnite sequence u. Thus at some future
stage a successor of £! was labeled with si(y) (i.e. 2). But a successor of 'is a
successor of t by transitivity of Ry, as desired. O

Putting Fact 2.3.5 and Lemma 2.3.9 together, we obtain the desired complete-
ness result:

Fact 2.3.10. The modal logic S4 is complete for the class of models over the frame
To= (2%, Ry, h-i).

In the next section we look at modal language L and the frame T2 = (£*,R2)
from a topological perspective.
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2.4 TopologicalsemanticsforS4

We now turn to topology and the topological interpretation of the modal language
L. Long before Kripke-semantics for the modal language was established as the
yardstick, A. Tarski and ].C.C. McKinsey noted an irresistible connection between
Lewis and Langford’s axioms for the modal logic S4, and Kuratowski’s axioms
for the topological interior operator. The topological interpretation of modal logic
exploits thisconnection .®

Tarski'sidea was to view DA as the interior of the set A and 3A as the closure
of Aand try to understand what kind of logical structure such an interpretation
supported. Tarski was able to prove—in some sense quite unsurprisingly —that
under this interpretation the logic of the interior and closure operators turns out
tobe nothingless than S4. The argument for the general case is straightforward,
as we'll see below. The arguments for specifc topological spaces turn out to be
rather more involved. Itis part of our goal here to try to understand where such
complexity comes from. Let us introduce some basic background notions.

2.4.1 Topological semantics

A topology is a set of points with some spatial structure (one can think of itas a
set of points glued together in a certain way). Specifcally, a topology is a pair,
hX, )i, where Xisasetand) < P(X) satisfes,

1.X, 0],
2.IfA,B€J,thenAﬁB€JS,

3. IfA/EJ foralliE 7 then e AIE)

If in addition a topology satisfes,

T
4. 1f Ajie]) forallie€ I, then o, Ai€])

then the topology is called Alexandroff. As we’ll see, most interesting topologies
are not Alexandroff. More (structure) is not always better, as a cursory comparison
between Italian and American pizza quickly reveals.
Althoughatopological spaceisstrictly speaking a pair, (X, j ), we will for
simplicity of notation (and wherethemeaningisclear) often denoteboth the topo-
logicalspaceitselfand theunderlyingsetof pointsby X. ThesetsinJ arecalled

SEquivalently, one can exploit the connection between the 3-version of the S4 axioms and the

behavior of the closure operator C, via the defnition I(A) =¢C( €)). (In words, the interior of a
setis the complement of the closure of the complement of that set.)
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open sets. We say a set is closed if its complement is open. The union of open
subsets of a set, A, is called the interior of A:

Int(A) = I:{Oopenl Oc A}

The closure of a set is the complement of the interior of the complement:

CI(A) = @Int ¢ (A)

(Equivalently, a point xis in the closure of Aif every open set containing xcontains
some elementin A.)

We wish to interpret our language L in topological models. A topological
model is a pair M =X, Vj where X is a topology and V : P p(X) is a
valuation function. We defne a ternary relation M, x = ¢ that as before holds
between a point in a model and a formula. The cases for the atomic and Boolean
formulas are the same. The only real difference is in the modal cases of D and 3.
We want Do to be true at a given point x if x is in the interior of the set defned
by the formula ¢. Then also 3¢ should hold at x if xis in the closure of the set
defned by ¢. Weencode these observations in the following truth defnitions:

M, x|=D¢ < JO0opensuch thatxe Oand Vy € O, M, y |= ¢.
M, x|=3¢ < V Oopen, x € Oimplies Jy € Osuch thatM, y |= .

Let x beanAlexandrofftopologyandlet , < x.Consider theset (O, =

{O open|x @, i}e., the intersection of all open sets containing x. Note that

since our topological space is Alexandroff, this is a non-empty open set. We defne
the binary relation R on X:

Rxy & y € O«
Claim 2.4.1. Fx = hX, Ri is a refexive, transitive frame.

Proof. For refexivity, note that x € Ox. For transitivity, suppose Rxy and Ryz.
Then y € Oxand z € Oy. From the frst inclusion it follows that Oy S Ox. So we
have z € Oy € Ox, and hence Rxz. O

Moving in the reverse direction, we can generate a topology from a refexive,
transitive frame. Letf = |, R be a refexive, transitive frame. We will say that
a subset O of Xis open if itis upward-closed under R (where a set Ois upward-
closed under R if x cO and Rxy implies y O). Note that the collection of
open sets are closed under fnite intersections, arbitrary unions, and contain both
the empty set and the entire space X. Let Xr be the topological space defned in
thisway. Then,
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Claim 2.4.2. Xf is Alexandroff.

Proof. The reader can verify that Xris a topological space. To see that it is
Alexandroff, suppose thatis { @; | gollection of open sets in the topol-
ogyandlet x ¢ *,_, 0 and nyThe% since each_ @y upward-closed under ,

y € Ojforeachi € L Buttheny € ;c;Oj, and ¢, Oiis upward-closed under
R, as desired. P ]

The reader is invited to verify that the operations of generating a transitive,
refexive frame from an Alexandroff topology, and of generating an Alexandroff
topology from a transitive, refexive frame just described are inverses of one an-
other: if one starts with an Alexandroff topology, then generates a transitive re-
fexive frame, and then, from this frame, generates an Alexandroff topology in the
manner described, one ends up with the original topological space (and similarly,
when one starts from a transitive, refexive frame). When a frame and topological
space are generated in this way by one another, we will sometimes say they “cor-
respond.” The next proposition states that corresponding frames and topological
spaces satisfy the same modal formulas:

Proposition 2.4.3. Let X be an Alexandroff topology and let F be a transitive,
refexive frame. If X and F correspond, then for any formula ¢ in L, any x € X,
and any valuation V : P — P(X),

hF,Vi,x|=¢p © hX, Vi, x|=¢

Proof. The proof is by induction on the complexity of ¢. We show only the modal
clause, @ := Dy. Wehave,

hF, Vi, x |=Dyw < hF, Vi, y |= y for all y such that Rxy
< hF, Vi, y|=yforall y € O
< hX,Vi,y|=yforall y € Ox (by IH)
< hX, Vi, x|=Dy
What these observations tell us is that Alexandroff topologies are nothing more
than refexive, transitive frames. This is both useful and limiting. On the positive
side, it allows us to transfer a variety of important results directly to the topological
semantics. On the negative side, most interesting topologies are non-Alexandroff

(e.g., metric spaces). Much of our work in what follows will be constructing “nice”
maps between metric spaces and non-Alexandroff topologies.
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2.4.2 Interior maps and truth preservation in the topological seman-
tics

The work in the sections below requires us to recall some additional topological
notions. In the topological semantics, the notion of an interior map plays the role
of p gnorphismin the Kripke (or frame) semantics. In fact, when the topologies in
question are Alexandroff, the notions of pgnorphism and interior map correspond
exactly.

Let X and Y be topological spaces.

Defnition 2.4.4 (Open Map). A map g : X — Y is open if for every open subset
Oc X g(O)isopeninY.

Defnition 2.4.5 (Continuous Map). A map g : X — Y is continuous if for every
open subset U< Y, g®(U) is open in X.

Defnition 2.4.6 (Interior Map). A map g : XY is interior if it is both open and
continuous.

Defnition 2.4.7 (Full-Interior Map). A map g : XY is full-interior if it is
interior and surjective.

Fact 2.4.8 (Full-Interior Maps Preserve Modal Formulas). Let g : X Y,be a full-
interior map, and @ any formula of the standard propositional modal language
L Let VV:P — P(Y) bea valuation function and let V. = ([g®]0o VD)7 Then, for
any x € X,

WX, Vi,jxE @ < hY, VOi,g(x) =0)
Proof. The proof is by induction on the complexity of ¢. The base case and the
Booleancasesarestraightforward. For themodal case:

hX, Vi, x==Dy & hY,V'i,g(x) = Dy

we use the preservation of open sets along g to show the left-to-right direction, and
we use the continuity of g to show the right-to-left direction. The details of the
proofcanbefoundin,e.g., (40). O

Now suppose that X and Y are Alexandroff topologies, and let Fxand Fybe
the corresponding frames. Moreover, let g : X — Y be a full-interior map. Then,

Fact 2.4.9. The function g reinterpreted as g : Fx — Fyis a p@morphism.
Proof. See e.g., (40). O

"Thus Vis a valuation function on X, defned as the composition of g"1 with V°.
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Justas p grorphisms play an important role in transferring completeness re-
sults in the relational semantics, interior maps play a similar role in transferring
completeness results in the topological semantics. In the remainder of this section,
we recall some of the better known topological completeness results for S4. We
then use a particular sequence of interior maps to prove completeness for the Koch
fractaland therealinterval[0,1].

2.4.3 Topological completenessresults for 54

Theorem 2.4.10. The logic S4is sound and complete with respect to
(i) the class of all topologies (McKinsey & Tarski);

(i1) the class of all fnite topologies (Kripke);

(iii) any dense-in-itself metric space (McKinsey &Tarski);

(iv) the infnite binary tree, T2 (see below) (van Benthem, Gabbay).

In this chapter we will show,

(v) adirect construction for the Koch Curve, K. The Minkowski-Bouligand di-
mension of K is 1.26. (This chapter or McKinsey &Tarski).8

(vi) the Wilson tree or complete binary tree, T*, gquipped with the topology gen-
erated by fnite initial segments [see Defnition 2.4.11]. (This chapter)

Proof. (ii) follows from completeness for fnite frames; (ii7) is proved in (27);

(i) follows from either (i7) or (iii); (iv) follows from Lemma 2.3.9, originally
due to van Benthem and Gabbay.? For (v) and (vi), see the later sections of this
chapter. O

Part of our goal in this chapter is to revisit (iii) — in particular, the special case
of the real line, R—as well as to give a direct completeness proof for the Koch
curve. We will also mention some other fractals that are useful in topo-modal
constructions and for which completeness results can be had. We have in mind, in
particular, a direct proof of completeness of S4 for R?and R3via the Sierpinski
Carpet and Menger Sponge, respectively.

%Since the standard topological dimension of K is 1, there is a homeomorphism h between K

and [0, 1]. Thus, weknow that S4 iscomplete for Kas we cantransfer counterexamples via h. How-
ever, this is the frst direct completeness construction on a fractal curve of non-integer Minkowski-
Bouligand dimension, except for Cantor Set.

’Both J. van Benthem and D. Gabby introduce a variant of the unravelling technique.
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2.4.4 Theinfnite binary tree and the complete binary tree, viewed
topologically

The infnite binary tree, T2, is a rare object in mathematics that exhibits interest-
ing structural features from a great range of different perspectives. As we saw
above, it has enough structural symmetry and fexibility to carry the weight of the
completeness theorem of S4 in the relational semantics. T2 recurs when we start
thinking of space fractally. Welook next at an extension of T called the Wilson
tree, or complete binary tree, that allows us to prove two completeness results in
the topological semantics.

Wilson tree (complete binary tree), T*,

Defnition 2.4.11. Take alphabet £ =, 1 and construct the set Z*(Z*) of all
fnite (countable) strings over Z. Forany s ¢ 2*, let Bs= {5 xt|tc 27} ie,
the set ofall (possibly infnite) strings with initial segment s (where sis allowed to

be the empty string). Let B = {Bs| s € Z*}. Note that B is closed under fnite
intersections (Forany s, t € >* either Bs © By, Bt < Bs, or BsN\ Bt = &), hence
is a basis for some topology J * over £¥. Finally, let T+ = (Z*,J ).

Fact 2.4.12. (i) Z*, the underlying set of T §s uncountable;
(i1) T;’ is frst countable;
(ii1) T; isnon-Alexandroff.
SEPARATION AXIOMS:
(iv) T; is To,
(v) T; is not T1 (hence non-Hausdorff and non-metrizable)

Proof. (i) follows from an injection between the set of countably infnite strings
over 2 and the real interval [0, 1]; (ii) follows from the fact that the basis, B, is
countable; (iii) the intersection of basic opens Bo, Boo, Booo, ... (i.e., the countable
sequence 000...) is not open; (iv) For s, t € ¥, s 6= t if sis a descendant of ¢,

then either Bs separates s and t (if s € X*) or there exists £ € =* which is a
descendant of ¢ such that By separates s and ¢ (and vice versa, if ¢ is a descendant of

s). If neither s nor tis a descendant of the other, there exists £ € X* such that £ is
an ancestor of s but not of t, and Bp separates s and ¢ (v) take, for instance, s=0
and t= 00: thereisno opensetcontaining sthatdoesnotcontain ¢. O

In the remainder of this section, we show that S4 is complete for T,". To this
end, recall the map f: T2 — F = hU, R, xi given in Defnition 2.8. We view this
function now as a map, f': >* - U, between underlying sets, and extend it to a
map, f*: =% 1. Moreover, we now view the framegand T%as topological
spaces, and the map f* as a topological map. Weshow that f* is full-interior.
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Since $4 is complete for fnite, transitive, refexive frames, it follows from Fact
2.4.8 that S4isalsocompleteforT™,

We will need a few simple infnitary notions. We begin by defning an infnite
branch bof the tree T».

Defnition 2.4.13. [Countable Branch] Let b =< t, t1, ... > be an infnite branch
of T2. That is:

(i) o=h-i;

(ii) Foreach n € N, either th+1 = th % 0 or th+1 = tyh * 1.

Lemma 2.4.14. [Cycling Lemma] Let f be any function from T2 onto F = hU, R, xi,
and let b =< to, t1, ... > be an infnite branch in T2. Then there exists N € N such
that for all worlds x € U, and allm > N,

ftm) = x implies f(tm) = x for infnitely many m.

Proof. The lemma follows from the fact that U is fnite, so there are only fnitely
many labels in U for f to “choose” from. Labels that occur only fnitely many
timesonabranch, occurforthelasttimeatsomefnitenodeof T5. O

For a given branch b, let np, be the least such & N. Let Ap ={ f (tm) : m >
np} (Thus Apis the collection of worlds in U that label infnitely many nodes of
the branch, b, under f).

Note that the Lemma states that after some initial segment of ballnodes of b
are sent by fto elements in Apand each of these elements labels infnitely many
nodes on the branch.

Fact 2.4.15. Forany n € N and any x € Ap, Am > n such that f{tm) = x.

Proof. This follows from the fact that every element in Aplabels infnitely many
nodes in b. [

Defnition 2.4.16. [Branch Labeling] Let f be a p g morphism from T2 onto the
fnite rooted frame £ U,hR, x . For every branch b in T2, we let the fnite choice
function C(b) return a choice of ycAp. Further, noting that every branch b has a
unique countable sequence in X* associated with it, we can think of the branches
and elements of ¥ interchangeably. We defne the extension, f* :Z* LU, of
f as follows: Let ty be the element in £* that corresponds to the branch b. We
let £ *(t) = C(b). Thus we label each countable string in X* with a node in
Apc U.
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For the remainder of this chapter we view f and finterchangeably asa maps
between topological spaces, frames, or simply underlying sets. From the context
it should be clear which of these we intend. Also, we refer to ‘fnite” and ‘limit’
nodesof the tree T* jwith the obvious interpretation.

Theorem 2.4.17. f* : T3 — F is full-interior.

Proof. We need to show that f* is open, continuous, and surjective.

(Open.) Let O ¢ * be a basic open set. Then O = Bs for some fnite node s.
Let y = f *(s) and let Dy = yz ¢ U |Ryz }. We show that f *(Bs) = Dy.
Weknow thatevery pointin Dylabels some node in Bsby the fact that fisa
p-morphism. Thus Dycf *(B). For the reverse inclusion, let z f *(Bs).
Then z = f *(¢) for some tc Bs. If tis fnite then £ *() = £ (¢) Dy,
where inclusion follows from the fact that fis a p-morphism. If tis a limit
node, then £+(£) = £ (£) for some fnite node tﬂe Bs (by construction of
). Moreover, £+(£) = £(£) ¢ Dy (since £ is fnite). Thus £+(B) Dy,

asneeded.

(Continuous.) Let Ube an open setin F. Let s € (f*)®}(U), and let f*(s) =
y e U. Weneed to show thereisanopensetO < TE, suchthats € O
(FH(U). Now if sis fnite, then we already know that f*(Bs) =Dy ¢
U (by proof of Open above). So sdBs (f ¥)®(U ), where Bsis open. If s
is a limit node, then there is some fnite s’ such that £(s') = y, and RS's.
But then f¥(Bg) = Dy Uands By (£7)®(U), where By isopen.
Thisshowsthat(f")®(U)is open,asneeded.

(Surjective.) Surjectivity follows from the fact that x € Range(f *) and f* is
open (where x is the root of F).

O
Theorem 2.4.18. S4 is complete for T*.,
Proof. By Fact 2.4.8, Theorem 4.2.3, and Theorem 2.4.17. O

In the next section, we construct a full-interior function from the real interval
[0, 1] onto T¥, via the Koch Curve. That construction gives us both completeness
of S4 for the Koch Curve, and a new proof of completeness of S4 for the real
interval [0, 1].
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Figure 7: K2: The length of each line segment is 1—,9and the fve triangles with
apex’s at Yo, Y2, X, 22, 2o are equilateral triangles

2.5 Fractal curves and topological completeness

Our goal is to constructa homeomorphism between the interval [0, 1]and Koch
Curve fractal, K, and a relatively simple full interior labelling [ : [0,1] T,
inspired by the construction of Koch Curve. The labeling itself provides a straight-
forward proof of completeness of S4 for the real interval. When composed with
the homeomorphism we obtain completeness of S4 for the singleton class K, the
Koch Curve.

2.5.1 The Koch curve

Recall the construction of the Koch curve, K.
Webegin with the unitinterval [0, 1]. At the frst stage, K1, we let the middle
third of the interval be “pushed up” to form two sides of an equilateral triangle with

side length 1, as pictured in Figure 6. At the second stage we let the middle third
of each line Segment of K1 be raised to form two sides of an equilateral triangle of

length L. This gives Kz in Figure7.
In general, at stage n of construction, we raise the middle third of each line
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gn(x2)

SN
gn(y) =y gn(y) =y

Xp —— X1 X2 B — x4

Figure8: Thisfgureshowshow gnacts onasinglesegment[xo, x4] of Kngt. gnis
the identity function everywhere except: (i) gn(x2) is the apex of the triangle, and
(i) gnmaps the line segment (x1, x2) linearly onto a and maps the line segment
(x2, x3) linearly onto b.

segment of Kn¢1 to form twosides of anequilateral triangle of sidelength equal
tothelength of the segmentraised.

The Koch curve is a limit of the construction stages in the following sense. Let
Ko be the unit interval [0, 1]. Forn =1, 2..., let

gn: Knet — Kn

be the obvious homeomorphism from Kngt to Kn. And let

Jfn=gno gnet... ° g1
Thus, foreachn N, f5:[0,1] _ Kpisahomeomorphism from [0, 1] onto Kn.
Finally, welet fbe the pointwise limit of these functions:

f=1lm f,

n—oo

and the Koch curve, K, is the range of this limit:
K = Range(f)
Claim 2.5.1. f: [0, 1] — K is a homeomorphism.
Proof. We need to show that f'is bijective, continuous and open.

1. (Bijective) Note that any two distinct points x, yd0, 1] eventually end up
on different line segments under some fn. Indeed, since x = y, we know
d(x, y) >0 (where ddenotes the usual distance function). But the length of
line segments in Kpis (31—)”. Since (1)"_.0, the length of line segments
in Knis eventually smaller than the distance d(x, y), and xand y belong to
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different line segments. Weleave it to the reader to verify that such points
are not identifed under f —i.e., f(x) = f(y). This shows that f'is injective.
Surjectivity follows fromthe factthat K= Range(f).

2. (Continuous) Weshow that fis the uniform limit of continuous functions,
hence continuous.’® Note that for any x € [0, 1], d (fa(x), fag1(x)) =
d(gn(fne1(x)), fne1(x)), where d denotes the distance function in the usual
metric on R?. Morggver, by construction of gn, gn movg§points at most a
distance of (31—)"63 ). So d (fn(x), frer(x)) <( 1g)"( —3)_ 0, forall x
[0, 1]. Thus the f's converge uniformly, and the uniform limit of continuous
functions is continuous.

3. (Open)Wefrstshow thattheimageunder fofaclosedsetisclosed. Indeed,
if A < [0,1]is closed, then it is also compact (since [0,1] is bounded). But
the continuous image of a compact set is compact, so f (A) is a compact
subsetof K. So f{A)isclosed (and bounded), asdesired. Now suppose that
O c [0,1]isopen. Then f{O) = f[0,1]) M[O, 1] QO) =K 0]‘([0, 1] 'y
0),since f:[0,1] _, Kisabijection. By theaboveargument, f{[0,1] 'y 0)
is closed, so f{O)is open.

O]

It follows from the previous claim that f : K — [0, 1]is a homeomorphism.
Wenow wish to constructafunction: [0,1] . '{+ that is full-interior. Once we
have doneso, lalone will prove completeness of S4 for thereal interval [0, 1], and
the composition { f ¢ : K T* will prove completeness of S4 for the Koch
curve, K. Much as we constructed f as a limit of fnite approximations, fn, we
now construct the function las a limit of stagewiselabeling functions, . Indeed,
as the reader will presently see, the functions, Iy, correspond neatly to stages of
Koch construction.
Note above that each gn: Kng1 — Knsends Kn¢i to Knby breaking up
eachlinesegmentof Kn¢1into fourlinesegments of K. For any linesegment sin
Kngrwerefertoits “successor” segmentsin Kpas (inorder fromlefttoright) A(s),
B(s), C(s) and D(s) (see Figure 9). There is an ambiguity here with respect to
endpoints: is the point 1 for example, in the segment A([0, 1]) or B([0, 1])? For
reasons that will become clear below, we decide that B(s) and C(s) are always
open on both ends, while the “right” end-point of A(s) and the “left” endpoint of

D(s) are always closed. (The left endpoint of A(s) and the right endpoint of I(s)
are either open or closed, depending on whether the segment s itself is open or

"Here we view the functions f,as functions from the space[0,1] to R?, with the usual metrics
oneach of these spaces.
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B(s) C(s)

A(s) D(s)
X ——— X B —— Y

Figure 9: Segment s in Kn¢t is[x,y]. Then A(s) = [x, x1], B(s) =
(x1,22), C(s) = (x2, x3), I(s) = [x3, yl, and E(s) = {xa}.

closed at that endpoint). Thus, e.g., ;—E A([0, 1]) and 2;6 D([0, 1]). Note that

for each segment s this leaves one point still unclassifed —namely, the midpoint
of s which becomes in the next stage of construction, the apex of the equilateral
triangle (in Figure 9, the point x2). For simplicity, we let this one point constitute
anew singleton set E(s).

These defnitions allow us to construct stages of labeling in a natural way. Fix
x[B, 1], n N and let sx,n¢1 be the line segment in Kn¢1 containing fre1(x). We
let:

( lhei(x) * 0 if fa(x) € B(sxnél)
In(x) = het(x) * 1 if fa(x) € Csxnet)
lhe1(x) otherwise
Stages of labeling correspond to stages of Koch construction. If in the n-th
stage of Koch construction x “stays in the same place” (i.e., fa(x) = fang1(x)),
then the label for x at stage n remains what it was in the previous stage (i.e.,
In(x) = lh1(x)). If on the other hand x gets “pushed up” to a side of an equilateral
triangle introduced at stage n, then the new label ls(x) appendsaQor 1 to the old
label ln¢1(x) (depending on which side of the equilateral triangle —i.e., “left” or
“right”.)
Note that some elements in [0, 1] “stabilize” over successive labelings and some
do not. More precisely, some but not all points x40, 1] satisfy the following
condition:

(*)3AN € N such that Vn = N, In(x) = In(x)

If every point in the interval stabilized, we could happily restrict our attention to
the infnite binary tree T2 (without limits) and use this tree to label points in the
real interval [0, 1]. The fact that many —in fact uncountably many — points do not
stabilize is our motivation for passing from T2to Z*. Our fnal labeling function,
agrees with stage-wise labeling functions on points that stabilize, but assigns limit

54



nodes of T2+ to all points that do not stabilize. We defne the function I : [0, 1] —
T; as follows:

C In(x) if x satisfes (
¢ otherwise

I(x) =

where tis the unique countable sequence over {0, 1} that has In(x) as initial seg-
ment foreachn ¢ N.

Totakeasimpleexample, itis clear thatthe points stabilizes and therefore I(1)
is a fnite string. Indeed, ( 1) i, as Ing Ly = 1o( £) i ffor all n N. Note that
successive labeling functions, I, are monotonic in the following sense: For any
x € [0, 1], if m < n, then ls(x) is an descendant of In(x) (i.e., In(x) = Im(x) * t
for some t € £*). Moreover, [(x) is a descendant of In(x) for all n € N (i.e.,
(x) = In(x) * tn for some ty € V).

Theorem 2.5.2. 1 : [0, 1] — T3 is a full, interior map

The proof of this theorem s given in the section below. Westate as corollaries
the twomainresults of this chapter:

Corollary 2.5.3. $4 is complete for the class of models over the real interval [0, 1].
Proof. Immediate from Fact 2.4.8, Theorem 2.4.18, and Theorem 2.5.2. ]
Corollary 2.5.4. S4 is complete for the class of models over Koch curve, K.

Proof. Bythemap [ - f¥: K _ T4. Thatthe compositionis full-interioris
immediate from Claim 2.5.1and Corollary 2.5.3. O

2.5.2 Completeness via the Koch curve

In this section, we prove Theorem 2.5.2.

Proof. As before, for any fnite node s € T+,21et Bsbe the basic open set { sk t| t €
pIan
1. (Continuous) Let Ube a basic open set in T*. Then U = Bsfor some fnite

node s € T4. Suppose x € 19}(Bs). We show there is an open set O <

[0, 1] such that x € O < 194(Bs). By construction of the functions Iy, there
exists aleast N N such that [n(x) = s. Moreover, at stage NV all points
belonging to some open interval Owhich contains xare labeled by s—i.e.,
for each y € O, In(y) = s. By monotonicity of the labeling functions, (y)
is a descendant of In(y)(= s) for each y € O. So O < 19(Bs). Moreover,
x € Oand Oisopen, asneeded.
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2. (Open) We introduce the notion of a maximal, uniformly labeled (MUL)
interval under [ly. In particular, I ¢ [0, 1] is a MUL interval under I if
for all x, yd, In(x) = l(y), and there does not exist a strictly bigger
interval I' - T with this property. With slight abuse of notation, where I
is a MUL interval under In, all of whose points are labeled by some node
t, we will write [o(I) = t. Note that for each point x [0, 1], x belongs
to successively smaller MUL intervals under the fnite labeling functions,
l,0,B,....(Thus,e.g., for x = 1/4 xbelongs to the MUL interval [0, 3]
under 1, then tothe MUL interval [ 3] under B, etc.) Letting Ix,nbe the
MUL interval under I containing x, we have that length (In) —n—o 0.
It follows that if O < [0, 1]is open, and x € O, then for large enough n,
Ln € O.

Now let O < [0, 1] be open, and suppose s € (O)—that is, {x) = s for
some x € O. Weneed to show that there exists an open set U < T* sych
that s € U< [(O).

If (case 1) s is fnite, then for large enough n, Ik O and Ih(Ln) = s.
We claim that [(Ixn) = Bs. Since Ixn <O, we have s¢ Bs [(O), and
Bsis open, as needed. (Proof of the claim: By monotonicity of the labeling
functions, we know that {In) c Bs. The diffcult part is to show that
Bs d(In)—in particular, that every limit node in Bslabels some point
in Iy nunder L. Weprove this part, and leave the case for fnitenodes to the
reader. Let 7 be a limit node in Bs. Then r = s % 7' for some countably
infnite string A =t We write # = (rﬂl, r%, 703, ...). We need to fnd »/

In such that I(xd) = r. It will be useful for us to label different segments

of an MUL interval, I by A(I), B(I), C(I), and D(I), just as we labeled
different parts of the line segments in K, above.!! We now defne a sequence
of points xn € [0, 1], recursively. For the base step: If rol = 0, then let x1 be
some point in B(Ix,n); if 7, = 1, then let x1 be some point in C(Ix,n). For
the recursive step, assume we have defned the points xi, . . ., xx. Then if
;’;( +1 = 0, let xx+1 be some point in B(Ix,,n+k); if r’}( +1 = 1, then let xk+1
be some point in C(Iy, n+k). By construction, for each k € N, we have
Xk+1, Xk € Iyon+k. SO [xk+1 @ xxl < length (Iy.n+k) —k—o0 0. Thus
the sequence {xx} is Cauchy, hence convergent. We let K = limg— oo Xx.

UThus, if I = (i, &), we have:

B() = (i +7 (b @1), iy + 291)

D) = (i + 29 i, @' (b @ 1))
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It is then clear by construction that o= ILinand (X)) = sx A =1 as
needed.)

If (case 2) s is a limit node, then In(k,n) is a fnite ancestor of s, for each
n  N. We pick n large enough so that Ixn O and let t = In(I,n). Then,
as in the previous case, {(Ixn) = Bt. Moreover, sc Btby monotonicity of
the labeling functions. Since knc O, we have se Bt [O), and Btis
open, as needed. -

3. (Surjective) Weknow already thatforsomex ¢ [0, 1], {x) = ,which
is the root of T% (pick, e.g., x=1). Moreover, the entire interval [0, 1] is

_(I)_Ren. So by the fact that L is open, [0, 1] is open, and contains the root of
5 Since every nodein T 5 is a descendant of the root, it follows that [l is

surjective.

This completes the proof of the theorem.
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Chapter 3

Completeness of S4 forthe
Lebesgue Measure Algebra

This chapter explores a new, probabilistic semantics for the basic propositional
modallanguage. In a series of recent talks, Dana Scott showed that the standard
propositional modal language can be interpreted probabilistically, by assigning for-
mulas to elements of the Lebesgue measure algebra, or algebra of Borel subsets of
[0,1] modulo sets of measure zero. In this semantics, formulas are not simply true
or false ina given model, but acquire a probability value between 0 and 1, corre-
sponding to the measure of the element of the algebra to which they are assigned.
We prove completeness of S4 for Scott’s semantics (formally, that S4 is complete
for the Lebesgue measure algebra). Several interesting corollaries follow from the
proof of this result. First, any non-theorem of S4 can be refuted at each point in
a subset of the real interval [0, 1] of measure arbitrarily close to 1. Second, intu-
itionistic propositionallogic (IPC) is complete for the subframe of open elements
in the Lebesgue measure algebra, or elements that have an openrepresentative.
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3.1 Introduction

1'We saw, in the previous chapter, that modal languages can be interpreted in topo-
logical spaces, and that the modal logic S4 characterizes any dense-in-itself metric
space —in particular, the real line, R. The real line, however, can be investigated
not just from a topological point of view, but from a measure-theoretic point of
view. Here, the probability measure we have in mind is the usual Lebesgue mea-
sure on the reals. In the last several years Dana Scott introduced a new probabilistic
or measure-based semantics for S4, which is built around Lebesgue measure on the
reals.

Scott’s semantics is essentially algebraic: formulas are interpreted in the Lebesgue
measure algebra, or the o-algebra of Borel subsets of the real interval [0,1], mod-
ulo sets of measure zero (henceforth, “null sets”). We denote this algebraby  \g.
Thus elements ofpgre equivalence classes of Borel sets. In Scott’s semantics,
each propositional variable is assigned to an arbitrary element @f. Conjunctions,
disjunctions and negations are interpreted as meets, joins and complements in the
algebra, respectively. In order to interpret the S4‘D’-modality, we add to the al-
gebra an interior operator (defned below), which we construct from the collection
of open elements in the algebra, or elements that have an open representative. Un-
like the Kripke or topological semantics, there is no notion here of truth atapoint
(or at a “world”). Indeed, singleton sets—sets consisting of a single point—have
measure zero, and so “disappear” in the Lebesgue measurealgebra.

The introduction of a new semantics brings with it familiar questions. Is the
set of validities in the Lebesgue measure algebra axiomatizable? If so, is it char-
acterized by any known modal logic? In particular, does the set of validities in the
measure algebra coincide with the theorems of S4 (i.e., is S4 sound and complete
for Scott’s measure-based semantics)? Such questions belong to a broader family
of questions that parallel, in some sense, the questions that we are accustomed to
ask about Tarski’s topological semantics. Do different measure algebras give rise to
different modal logics? To what extent can modal languages describe, discriminate
between, and help us to reason about different measure structures?

Inthischapter, weaddress the question of completeness for Scott’s semantics.

Ourmainresultis that S4is complete for the Lebesgue measure algebra. Two

important corollaries follow from the proof of this result. First, any non-theorem of
S4 can be refuted at each pointin a subset of the real interval, [0, 1], of measure

! A version of this paper was published in Journal of Philosophical Logic (see (22)). Since then
Ithoughtofaneasier way to goabout the main proof,and so parts of the current versionare changed
from the published version. This easier way is inspired by the main construction in (38). I would
like to thank the publishers of the Journal of Philosophical Logic for granting me the permission to
reproduce the published work here.
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arbitrarily close to 1. Second, intuitionistic propositional logic (IPC) is complete
for the subframe of ‘open” elements in the Lebesgue measure algebra, or elements
with an open representative set.

3.2 Topological and algebraicsemantics for S4

Let the propositional modal language L consist of a countable set, P = {P; |
for all i € N}, of propositional variables and be closed under binary connectives
-, V, A, < and unary operators —, D, 3.

Defnition 3.2.1. The modal logic S4 in the language L consists of some complete

axiomatization of classical propositional logic PL, some complete axiomatization
of the minimal normal modal logic K, say the axiom:

K:D(¢ — w) — (Dp — Dy)
and the rule:

N: ¢@= Do
and fnally the two special S4 axioms:

4:DP—- DDP
T:DP— P

Weareinterested inalgebraic models of the modal system S4, or topological
Boolean algebras.

Defnition 3.2.2. A topological Boolean algebra (henceforth TBA) is a Boolean
algebra with an interior operator, I satisfying the following properties:

(W) Ia<a

(L) Kan b)=1an Ib
(B) lIa = Ia

() (1) =1

A complete TBA is a TBA in which every collection of elements has a supre-
mum (and infmum).

Example 3.2.3. (Topological feld of sets) The set of subsetp (X) of a topological
space X with set-theoretic meets, joins and complements, and where Ia denotes
the (topological) interior of a, is a complete TBA and we denote it by B(X). More
generally, any Boolean algebra, pof subsets of a topological space X that is
closed under topological interiors is a TBA (A need not contain all subsets of
X). We call any such algebra a topological feld of sets. Note that we reserve the
notation B(X) for the topological Boolean algebra generated by all subsets of X.
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Defnition 3.2.4. An algebraic model of S4 is a pair, hA, Vi, where A is a topo-
logical Boolean algebra, and V : P — A is a valuation function, assigning to each
propositional variable some element of the algebra, A.

We would like to extend the valuation function, V, to the set of all formulas in
L, and we do so by the following recursive clauses. For any formulas ¢ and y, let:

V(ipVv yw)=V(p) Vv V(y)
V(-p)= @V(p) (3.1)
V(Do) = [V (p))

where symbols on the RHS denote (in order) the algebraic join, complement, and
interior. (Theremainingbinary connectives &, ., .. }and unary operator{3
are defned in terms of the above in the usual way.)
Let M = hA, Vibe an algebraic model. Wesay a formula @is satisfed in M

(M = @) iff V() = 1a (the top element in the algebra). We say @ is satisfed in
A (A | = @)iff pissatisfed inevery model M defned overthealgebra A . Finally,

forany class C of TBA's, @ is satisfed in C (=c¢ ¢) iff @is satisfed in every TBA
in C2

We now defne completeness in the usual way: A logic S is complete for a class,
C, of TBA’s if every formula that is satisfed in C is provable in S. In symbols,

l=c @ = 'so

An equivalent formulation will be more useful in what follows: S is complete for
C if any non-theorem of S is refuted in C. In symbols,

Osp = |=c o

Note that if As a topological feld of sets, it makes sense to talk about truth ata
point (much like truth at a world in Kripke semantics for the standard propositional
modal language). For any formula ¢, valuation V: P B(X), and point x X,
wecansay that @istrueat xif

x e V(p)

This ternary relation between a valuation, formula and point in the topological
space has no place in the general algebraic semantics —wherg need not be a
topological feld of sets —and, in particular, has no analog when it comes to the
Lebesgue measurealgebra, as we will see below.

*This semantics can be generalized by defning a set of designated elements, Da, of Aand letting
satisfactioninamodel M = hA, Vi be defned by: V(¢) € Da. The defnition used in this chapter
is the special case where Da ={1a}.
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Theorem 3.2.5 (Tarski’s completness theorem). The modal logic S4 is sound and
complete for:

(i) The class of all topological spaces (i.e., { B(X) | X is a topological space }).
(ii) The class of all fnite topological spaces (i.e., {B(X) | X is a fnite topological space }).

(iii) Any dense-in-itself metric space (i.e., B(X) for any dense-in-itself metric
space, X).

Proof. The theorem was proved by McKinsey and Tarski in 1944 in (27). O

Defnition 3.2.6. A S4 Kripke frame is a paig U, R , where U is a set (of ‘worlds’)
and R is a refexive, transitive binary relation on U . A rooted S4 Kripke frame is
a triple hU, R, woi, where U and R are as above, wo € U, and woRw for each
w € U.Wesay that a (rooted) Kripke frame is fnite if U is a fnite set.>

Defnition 3.2.7. Let X be a topological space. Then X is Alexandroff if the
collection of open sets in X is closed under arbitrary intersections.

Itiswell-known that S4 Kripke frames arejust Alexandroff spaces, and vice
versa. Indeed, let {J, R pea S4 Kripke frame, and say thata set U0 Uis open
ifitis closed under the binary relation R. The collection of open sets so defned
contains the empty set, the entire space U, and is closed under arbitrary unions and
intersections. Thus the collection of open sets defnes a topology onIU . Conversely,
if Xisan Alexandroff space, thenforany x ¢ X, theset Ux= = {Oopen |x
Ojisanopenset. Weput xRyiffy  Ux. Thereadercanverify that Risrefexive
and transitive. Itfollows thatpX, R ipa S4 Kripke frame.

Notice that any fnite topology is Alexandroff. (There are only fnitely many
points in the space, so only fnitely many open subsets.) Thus the collection of
fnite topological spaces is just the collection of fnite S4 Kripke frames. We can
now state Theorem 3.2.5 (ii) as follows: S4 is complete for the class of all fnite
S4 Kripke frames. In fact, more is true: S4 is complete for the class of all rooted
fnite Kripke frames. That is to say, any non-theorem, a, of S4 can be refuted
at the root of a fnite Kripke frame. (We do not reprove this classic result here.
To understand it, though, think about what happens if we simply delete from a
(non-rooted) Kripke frame every node not related under R to the world at which
a is refuted.) In the fnal section of this chapter, we will appeal to this stronger
completeness result.

3This somewhat non-standard defnition of Kripke frames is meant to highlight frames as topo-
logical spaces. On a more standard presentation, a Kripke frame is whatI call here a rooted Kripke
frame.

62



3.3 The Lebesgue measure algebra

In this section we defne our central object of study: the measure algebra, Ng.
Weprovethat |\ is a complete Boolean algebra, and defne an open sublattice in
M- Wethen show that the sublattice of open elements forms a complete Heyting
algebra.

Defnition 3.3.1. Let A be a Boolean algebra.  We say that a non-empty subset
I< Aisanideal if

1. Foralla,belL, avbel

2. Ifa€landb<a, thenb € I

If I'is closed under countable suprema, we say I is a o-ideal.

We can construct new Boolean algebras from existing ones by quotienting by
anideal. If A is a Boolean algebra and I = A is anideal, we defne the correspon-
dence ~ onAby:

x~yiff(x4 y el
where 4 denotes symmetric difference.* Letting A/I be the set of equivalence

classes under ~, and letting | x| be the equivalence class corresponding to x € A,
theoperationsV, Aand @onA/Iaredefnedintheobviousway:

x| vyl =[x Vv yl
Xl Ayl =lxAyl 32)
¢x| =| @x|
It is easy to verify that A/Iis a Boolean algebra with top and bottom elements

|1al and |0Al, respectively. From the defnitions of V and A we can reconstruct
the lattice order < as follows. Forany |x/, |yl € A/,

|x| < |yl iff [x| A lyl = [x]

Lemma 3.3.2. Let A be a Boolean Algebra and I an ideal in A. Then for any
elements a, b in the quotient algebra A/ 1, the following are equivalent:

i) a<b

*Note that differences and symmetric differences are defned in any Boolean algebra, notjustin
felds of sets. In particular, x @yis defned as x A @y (where @y is the Boolean complement of g
and x4 yis defned as (x @y) V (y €.
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(ii) Forany representatives A of a, and B of b, there exists some N € I with
A < BV N (in the Boolean algebra, A).

(iii) Forany representative A of a, there exists a representative Bof bwith A < B
(in the Boolean algebra, A).

Proof. (i) — (ii) Suppose a < band leta= |A|, b= |B|. Then |A A B| =

|A| A |B|l =|A|l,s0AANB~A Thus A@9B=A (A A B) = Nforsome N
€ I It follows that A < BV N. (i) — (iii) This follows from the fact that B
V N~ Bfor N€ I (iii) — (i). If A < B, then |A| A |Bl = |A A B| = |A],
and a = |A| < |B| = b. m

We want to add measure-structure to Boolean algebras. The simplest such
structures are Boolean algebras carrying a fnitely additive measure. We are inter-
ested, however, in Boolean o-algebras carrying a countably additive measure. The
relevantdefnitionis givenbelow.

Defnition 3.3.3. A measure, u, on a Boolean o-algebra 5 A is a real-valued, non-
negative function u on A, with u(0a) = 0, that satisfes countable additivity:  If
{Fn}neN is a countable collection of elements in A with Fn A Fm = Oaforall  n,
méeE N, then

u(— Fn) = u(Fn)
n2€L neN

We say that a measure, 1, on a Boolean o-algebra, A, is normalized if u(1a) =
1. We say that u is positive if u(a) = 0 iff a = Oa.

Defnition 3.3.4. (Halmos) A measure algebra is a Boolean o-algebra, A, together
with a positive, normalized measure, u, on A.

Fact 3.3.5. Let u be a normalized measure on a Boolean o-algebra, A, and let U
be the set of elements a € A with u(a) = 0. Then,

(i) Uisa o-ideal in A

(ii) The quotient A/ U'is a Boolean o-algebra.

(iii) There exists a unique measure v on A/ U defned by
lal) = u(a)

Moreover, v is positive and normalized.

°A Boolean o-algebra is a Boolean algebra that is closed under countable joins (and meets).
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Proof. () If a < b, and u(b) =0, we write b= a Vv (b @a). But then u(a) < u(b),
by additivity of u, so p(a) = 0. Iffann & js a countable collection of
elemWs in Awiib u(an) = 0 forall n & N, thenby countable subadditivity of
u, u( pan) < pu(an) = 0. (i) Weneed to show that the quotient algebra
A/ Uisclosed under countablejoins. Let {q, | n e N}V\?e a colleWon of elements
ilwA/U with g, = |Ay| foreach n € N. Weclaim "~ a,=| , Ap| -Clearly

1 nAnl is an upper bound on{an | n € N}. If b = |B| is an upper bound on

an | n € N}, then |An| SAfn < IB,ang;VAnS BV \f¥n for some Np € U (see

Lemma 3.3.2). Butthen ,Ap< BV ,Npand ,Np€ U(since Uisa
w

o-ideal). So | , Anl < |B| = b. (iij) the proof can be found in, e.g., (15).

Let Leb([0, 1]) be the o-algebra of Lebesgue-measurable subsets of the real
interval [0, 1], and let  denote standard Lebesgue measure. Then u is a normalized
measure on Leb([0, 1]) with u(?) = 0.

Defnition 3.3.6. (The Lebesgue Measure Algebra,\) Let Nully be the set of
measure zero subsets of [0,1]. Then by Fact 3.3.5, the quotient algebra,

Leb([0, 1])/Null,

is a measure algebra. We denote this algebra byngnd refer to it as the Lebesgue
measure algebra.

Inwhatfollows, we use uppercaseletters A, B, C... to denote subsets of [0, 1]
and lower-case letters a, b, c... to denote elements of M. Equivalence classes of
measurable setsare denoted with abar above therelevantset (e.g., a=A,0m= ),

1m = [0, 1]). We use ‘measure (A)” or simply ‘m(A)" to denote the measure of
theset A. The defnitionsin (3.2) give, for any subsets Aand Bof [0,1]:

AV B=AURB
AANB=ANB (3.3)
@A=10,1] @A

Lemma 3.3.7. For any sets A, B € Leb([0, 1]),
A~B |iff "A < Band m(A) = m(B)

Proof. The left-to-right direction is obvious. For the right-to-left direction, sup-
pose A < B and m(A) = m(B). Then A < B U N for some N € Null, so
m(A @B) =0.Furthermore,

m(B @A) = m(B) @ m(BN A) = m(A) @ m(BN A) = m(A ¢ B)
and we have m(B @A) =0.Thus A4 B € Nulland A ~ B. ]
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Proposition 3.3.8. M is a complete Boolean algebra

Proof. ®Weshow that any well-ordered subset Sof |\ hasaleastupperbound.
The proofisby transfniteinductionon the order type of S. Let Shave order type
a and write S = pyy|< a.For B < a, let gg = sup py vy B|(existence
follows from the inductive hypothesis). If a is a limit ordinal they gg 8 < a
isanon-decreasing sequenceof elementsin £\ and { m(gg) |8 < a }isa non-
decreasing sequence of reals. But note that there are only countably many distinct
realsin this sequence (for each “jump” between tworeals in the sequence, there
is a distinct rational number.) It follows from Lemma 3.3.7 that there are only
countably many distinct elements ‘gg’ in the sequencefgg B <a . Put ©\ is
closed under countable suprema (see Fact 3.3.5 (ii)), so sup S = spp gg B < a
exists. > Ul

By contrast, Leb([0, 1]) is not a complete Boolean algebra. If, e.g., Sis a non-
measurable subset of [0, 1], then the collectionf{ % | x &S has no supremum
in Leb([0, 1]). Note that the Lebesgue measure, 4, on Leb([0, 1]) is nota positive
measure: any non-empty countable set has measure zero, but is not equal to the
bottom element,gof the algebra. Indeed, it is proved in (15) that every (positive,
normalized) measure algebra is complete.

The Lebesgue measure algebrapjp well-known, but now we would like to
turn pgto a topological Boolean algebra. To do so, we must defne an interior
operator on the algebra. Wedo this by frst defning a collection of ‘open’ elements
in M.

Defnition 3.3.9. We say an element a € M is open if some representative A of a
is an open subset of [0, 1]. We denote the set of open elements in Mby G.

The next proposition states that not all elements of M are open.

Proposition 3.3.10. M6= G

Proof. The proof is postponed until §3.5.1, where we introduce thick Cantor sets.

In the next proposition we show that open elements jyform a complete
Heyting algebra. Recall that a complete Heyting algebra is a complete lattice that
satisfes the following infnite distributive law: For any x € Aand {aj| i € I}
A

/7

®This proof was suggested to me by Dana Scott. In fact, the more general claim that every
(positive, normalized) measure algebra is complete is proved in (15). The proof procedes by showing
thatanalgebraiscompleteiffitsatisfes the countablechaincondition,and thatany measurealgebra
so defned satisfes this condition.
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XA a= (XA ) (3.4)
el icl
Proposition 3.3.11. G is a complete Heyting algebra.”

Proof. Weneed to show that G is a complete lattice. Let{aj| i € I} = G, and let
aj = Aiforeachi ¢ I, with Ajanopenrepresentativeof a;. Let {pn,qn) e N}
be the collection of open rational intervals (open Wervals _\%ith rational endpoints)
contained insome (orother) Ai. Weclaimthat ~; ai=  ,(pn,gn). Clearly RHS
is an upper bound o gj|i ¢ I§thisfollowsfromthefactthateachopenset, A;
isequal to the union of rational intervals contained in it). Suppose b = Bisan

upper bound on{a;| i € I} with b € G. 8 For each i € I, choose IN; € Null
such that é’ € BU N. E§r eachn € N, c]goose i(n) such glat (pn, gn) € Ain.

We have:  ,(pn,gn) € pAin) S B U ,Njn), where , Njn) € Null

s
So n(pn, gn B> b, proving the claim. This shows that every collection of
elements in “has a supremum. What about infma? Consider now the collection
of 1 edJ of lower bounds,” in “on % i€ [ }. This collection has a
supremum, b. Weclaim that b = ; a;. The proof is similar to the previous and is
lefttothereader. W S '

Note that the proof shows that ; aj = ; Ai, where Ajis any open represen-
tative of aj (for l). Weuse this fact to show that satisfes the distributive law
(3.4),asfollows. Let x J=I:X7,witthn openrepresentative. Then,

XA ai=XA A

/ /

H
= (XnA))
(XN A))

]

__(x/\ ai)

In general, infma ingand pglo not coincide. Example: For each n N, let K, denote the
set of points belonging to “remaining intervals” at the n-th stage of construction of K (defned in

§3.5.1). Then Kn € G for each n € N, but infu{Kn | n € N} = K, and infc{Kn | n € N}
(where infw and infg denote infma in Mand G, respectively).

*The reader can verify that the condition b € G does no work in the proof. Indeed, this shows
thatsupremain M and G coincide. Thisisnot the caseforinfma (seenote. 6).

%Itis crucial that we take lower bounds in G and not in the larger M. In general, the set of lower
boundsinGand M donotcoincide! Seenote6.
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With our defnition of open elements in hand, we can now equip M with an
interior operator Idefned asfollows. Forany a€ M,

Ia = sup{b open|b < a} (3.5)

Proposition 3.3.12. I is an interior operator.

Proof. Let a, b € M. Axiom (1) is obvious. For (12), note that {a A b) < I(a)
and I(a A b) < I(b). So I{a A b) < Ia A Ib. For the reverse inequality, note that
Ia < aand Ib < b. Thus Ia A Ib < a A b. Moreover, (Ia A Ib) € G. It follows
that Ta A Ib < sup{c € G| c < a A b} = I(a A b). For (B) note that Ta € G,
and Ia < Ia, giving Ia < sup{c € G | ¢ < Ia}. By (i1) we also have IIa < Ia.
Finally for (4), note that [0, 1] € G. Thus I[0, 1] = sup{c€ G| c<[0,1]} =
[0,1]. O

Remark 3.3.13. At this point, the reader may be wondering: Why not defne the
operator I via the topological interior on underlying sets (just as Boolean opera-
tions on M are defned via set-theoretic operations on underlying sets):

I(A) = Int(A) *)

(where "Int(A)" denotes the topological interior of the set A {0, 1]). A simple
example shows that defnition (*) is not correct (i.e., not well-defned). Let A =
[0,1] @Q. Then A ~ [0,1]. ButInt(A) = @, and Int ([0, 1]) = [0, 1]. Soaccording to
(),[0,1]= (A) = 2.9

Corollary 3.3.14. The Measure Algebra, M, with unary operator Iis a TBA.
Proof. Immediate from Proposition 4.8 and Proposition 3.3.12. m

In general, there is no easy way to calculate the supremum of an uncountable
collection of elements inpgs indicated by the non-constructive proof of Proposi-
tion4.8. However, when we calculate Ia, we take the supremum of a collection of
open elements, and arbitrary joins of open elements reduce to countable joins, and
so are well-behaved (see proof of Proposition 3.3.11). The following proposition
shows how to calculate the interior operator in M in terms of underlying sets.

"Indeed, the example shows that the interior operator in the topological felds of sets Leb([0,1])
and B([0, 1]) behaves quite differently from the interior operator in M. This is crucial in what
follows, where, despite this difference, we aim to transfer valuations over B([0, 1]) to M.
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Proposition 3.3.15. Let a ¢ \ and let {(pn, gn) ¢ Ny bean enumeration of
open rational intervals (open intervals with mtignal endpoints) contained in some

(or other) representative A of a. Then, Ia = , (pn, gn)

Proof. The proof is similar to the proof of Proposition 3.3.11. We need to show
s =

that —(pn, gn) = sup {c €G k =a } Suppose that ¢ < Gand ¢ a Then
¢ = C for some open representative C and C < A for some representative A
of a (see Lemma 3.3.2). Since Cis open, C can be written as the union of open
ratiorgl intervals contained in C. Each such interval is also contained in A, so
C<c (pn, gn), and c < (pn, gn). This shows ,(pn, gn) is an upper bound
on{c€ G| c < a}. Now suppose that b = Bisanupper boundon{cc G | ¢ < a}.
Th@gl, foreachne N, (§”: gn) < b, %gd (pn,gn) € BU Npfor some Npg € Null

So  ,(pn,gn) € BU ,Np and ,(pn, gn) < b. This showsthat ,(pn, gn)

the least upper bound,on {ceGlec=< al [

Westate without proof anobvious corollary whichrepresents theinteriorin g
intermsof opensetsratherthanrationalintervals:

Corollary 3.3.16. Forany a € M,

r

T
Ia = {Oopen| O c A for some representative A of a}

Note from Corollary 3.3.16 that Ia € G for any a € M. Thus, as expected,
boxed formulas (i.e., formulas of the form D¢ for some ¢ € L) are evaluated to
openelementsin M.

3.4 Invariance maps

Ouraim in what follows will be to transfer completeness of S4 from fnite topolo-
gies (= fnite S4 Kripke frames) to the measure algebrapg by means of truth-
preserving maps. In this section, then, we study truth-preserving maps between
topological Boolean algebras. In the special case where we deal with topological
felds of sets, the key notion is that of an interior, surjective map. The key no-
tionin the more general algebraic semantics is that of an embedding. The relevant
defnitionsare givenbelow.

Defnition 3.4.1. Let ppand gbe TBA's. A functionm: 1A — A2 isa homo-
morphism if it preserves Boolean operations and the interior operator:
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m(aV b) = n(a) v n(b)

n(a A b) = m(a) A n(b)
(@a) = g(a) n(la)
= I((a))

UWe say that w : A1 — Az is an embedding if 1 is an injective homomorphism.
Finally, we say that 1 : A1 — A2 is an isomorphism if 1 is a surjective embedding.

Lemma 3.4.2. Suppose that A1 and Az are TBA’s and that w : A1 — Az is
a homomorphism. Let V' 0 : P — A1 be any valuation over Ay and defue the
valuation V. : P _, p by V(P) = m  VYP). Then for any formula a in the
propositional modal language, L,

V(a) = o Vi(a)

If wis an embedding, then (also)
Vi(a) = 1A, iff V(a) = 1A,

Proof. The proof is by induction on the complexity of a. The base case is true by
defnition of V, and we prove only the modal clause:

V(Dy) =LV (@)
=I(mo Vo(go)) (by inductive hypothesis)
=n(I(V'(¢))) (since wa homomorphism)
=m0 V(D)
For the second part of the lemma (where mis an embedding), note thatif V(a) =
1A,, then by the previous part, m o V'(a) = 1a,. But since T is injective, V'(a) =
1A,. Conversely, if Va) = 1A, then V(a) = mo Vi(a) = mo 1A, = 1A,. O

Let X and Y be topological spaces. Recall that a map, f : X Y is con-
tinuous if the inverse image of every open set in Y'is open in X. fis open if the
image of any open setin Xis openin Y. A map thatis both open and continuous
iscalledinterior.

Lemma 3.4.3. Let X and Y be topological spaces, and form the corresponding
topological feld of sets B(X) and B(Y ). If g : X — Y s interior and surjective,
then [g®] : B(Y) — B(X)'2is an embedding.

"n the fnal equation, ‘7 on the LHS is the interior operatorin A1 and ‘7 on the RHSis the
interior operatorinay. Wetrust that the slight abuse of notation here will not confuse.
2The map [¢g?] is defned on B(Y). It takes subsets of Y to their pullbacks in X—i.e., for

ScY,[g?ls) ={xe X| glx € Sk
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Proof. Suppose S1, S2 B(Y ), with S1 5S2. WLOG, let y S1, y / S2. Then
since g is surjective, there exists = X with g(x) = y. But then x [g®1(S1)
and x / [g®1(S2), proving that [ g?1is injective.

Weneed to show that [ g®'] preserves the algebraic operations. The Boolean
operations are straightforward and we prove only the modal clause: i.e., for any
ac B(Y),

[g®1(Ja) = ([g*N(a))
By continuity of g, we know that [g®'](Ia) is open in X. Moreover, since Ia € q,
we have [g®](Ia) < [¢®](a). Thus [g®'](Ia) is an open subset of [g*1(a).
To see that it is the largest such subset, suppose O < [g*1(a) is open in X.

Then, since g is open, g(O) is an open subset of g, hence g(O) < Ia. But then
0 c[g®1(Ia). O

Proposition 3.4.4. Suppose that X and Y are topological spaces and g : X — Y
is an interior, surjective map. Let V0: P — B(Y ) be a valuation function and
defne V= [g9] o V'. Then for every formula a of L we have:

V(a) =[g®] 0 V(a)

and
via) = 15(v)iff V(a) = 1ax)
Proof. Immediate from the previous two lemmas. O
We want to construct embeddings not just from one topological feld of sets into
another, but from a topological feld of sets into the Lebesgue measure algebry/ .
Such maps will allow us to transfer completeness from a given topological space, or

class of spaces, to pgTo this end, let us defne a new, measure-theoretic property
of maps between topological spaces.

Defnition 3.4.5. Let X be the real interval, [0,1], let u be standard Lebesgue
measure on X, and let Y be a topological space. We say that a functiong : X — Y
has the M-property if for every subset SS Y,

(i) gel(S) is Lebesque-measurable.
(ii) Forany open set O € X, zfgel(S) N0 6=, then u(g®(S) N O) >0.

Proposition 3.4.6. Let X, u, and Y be as in Defnition 3.4.5. Suppose g : X . 'Y
is an interior, surjective map, and that g satisfes the M-property. Then the function
®: B(Y) — M defned by:

() = go(S)
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(for any S € Y ) is an embedding.'®

Proof. We need to show that ® preserves Boolean operations, the interior operator,
and is injective. The Boolean cases are straightforward and we leave them to the
reader. For the interior operator, we need to show that

O(L(S)) = (D(S))
We know that:

O(I(S)) =g (InK(S))
= Int(g9(S)) (since [gol] isahomomorphism)

|
= {Oopen | O < g9 (S)} (by defnition of interior)
[@(S)) = sup{copen| c < g®¥(S)}
-

|
= {Oopen | O < g9 (S) U N forsome N € Nully}

(where the last equality follows from Corollary 3.3.16). So it is suffcient to show
that for any open set O € X, if O € g®'(S) U N for some N € Nully, then O
c g¥(9).

Suppose not. Then there exists O € X open such that O € g®'(S) U N for
some N € Null, but O 6¢ g9(S). So there exists x € O such that x ¢ g@.(S).
Thus x € N. Now let g(x) = y € Y. Weknow that O N g®(y) 6= &. And since
g has the M-property, u(O N g¥(y)) >0. Buty ¢ S,and O < g¥(S)U N. It
follows that ON g®(y) € N. This contradicts the fact that Nhas measure zero.

1.

It remains to show only that @ is injective. Suppose that ®(S1) = ®(S2). Then
g% (S1) = g¥(S2). So u(g®(S1) g*(S2)) = 0. But g®(s1) g®(S2) =
g¥(s1 4£2). So u(g® (St $2)) = 0. Now it follows from the fact that g has
the M-property that for any non-empty set S Y, we have u(g®'(S)) > 0. (Take
as the open set O in Defnition 3.4.5 (ii) the entire space, [0,1].) This means that
S14S2= . S0 S1= S2. O

Corollary 3.4.7. Let X, u, Y, g, and ® be as above. Suppose that V 0: PB(Y)is
a valuation, and defne the valuation, V.= ® V. Then for every formula a in L
we have:

V(a) = ®o Vi)

BNote that ® = qogol, where q is the restriction of the quotient map from B([0, 1])Ng o

the set{g®(S) § Y cWe know that g® is an embedding, but the (unrestricted) quotient mpis
not an embeddirg. What the proposition shows is that when we restrict the quotient map to the

collection of g-pullbacks of subsets of Y, then the resulting map is an embedding.
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and
V(a) = Imiff V'(a) = 1a(y)
Proof. Immediate from Lemma 3.4.2 and Proposition 3.4.6. O]

Remark 3.4.8. Let B be a subset of the real interval [0, 1] of measure 1 with the
relative topology, and let Y, u, g, and ® be as above, except that g is now defned
on B. Then we can still view ® as an embedding of the algebra B(Y ) ) — even
though, strictly speaking, these defnitions are not correct (i.e., well defned). That
is because the measure algebra Leb([B])\ Nully is isomorphic to the Lebesgue
measure algebra, £ Thus it is suffcient, in Corollary 3.4.7, to require that g be
defned only on a subset of [0,1] of measure equal to 1. This will make life simpler
for us in the next section, where we aim to construct such a map, g.

3.5 CompletenessofS4fortheLebesguemeasurealgebra

We know that the logic S4 is complete for the class of fnite S4 Kripke frames (=
fnite topologies).!* Algebraically put, S4 is complete for the class of topological
Boolean algebras,{B( p ifp fnite topology . Our aim in this section is to
leverage this nice result toward a proof of completeness of S4 fqyj. Our strategy
will be to embed such Kripke frames in the algebig. To do this, we need to
construct ‘nice” maps from the real interval [0, 1] (or, more precisely, a subset, B,
of the interval of measure 1) to the Kripke framef. In particular, we need to
construct a map, g : B _, f that satisfes the conditions of Proposition 3.4.6.
We begin by recalling the thick Cantor sets, which will play a crucial role in the
construction of our map, g.

3.5.1 Thick Cantor sets

Recall the construction of the (normal) Cantor set. Webegin with the interval [0,
1]. Atstage n= 0 of construction, we remove the open middle third gl,%),
leaving “remainingintervals”0, 11and[2,1]. Atstage n= 1, weremove the
open middle thirds of each of these intervalsg(l9 2)and gz, 8), leaving remaining
intervalsJO, lJ, g;, ll, [93, Z] and [§, 1], and so on. In general, at stage n+ 1 of
construction, we remove the open middle thirds of each remaining interval from
stage n. The Cantor set, C, is the set of points remaining after infnitely many

"In the remainder of the chapter, I will use ‘fnite S4 Kripke frames” and ‘fnite topologies’
interchangeably.
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Figure 10: First fve stages of construction of the Smith-Volterra-Cantor set, K.

stages of construction. To calculate the measure of C, we need only subtract the
total measure of intervalsremoved from the measure of the unitinterval, [0,1]:

1 1 2
1 2n—n+1=1 = =y1i=0
~ (3) 3X(3)

" n=0 0 n=0

An easy argument due to Dana Scott shows that removing middle fourths, ffths,
etc. (as opposed to middle thirds) does not affect the measure of C. Indeed, let Cy
be the set resulting from removing open middle intervals of proportional length
1/n at each stage of construction. After removing the frst middle interval we
produce scaled copies of Cyhon the intervals [0, "—Olzland [ng], giving,

m(Cr) = 2 2@ 1 ()
n

and m (Cp) = 0.

We can, however, construct a set that is ‘Cantor-like” with non-zero measure.
The trick is to remove successively smaller portions of remaining intervals. The
setwe end up withis sometimes called a“thick” or “fat’ Cantor set. The particular
version of it below has measure =1/2, but thisis not necessary — sets of arbitrary
positive measure can be constructed insimilar fashion. 1°

Defnition 3.5.1. Begin with the interval [0, 1], and at stage n = 0 of construction,

remove the open middle interval of length 1—4 leaving remaining intervals [0, v

[37, 1]. Atstage n =1, remove open middle 1—i%from each interval, leaving [0, 2qu

(5~ g—] U{ s 23] vl 27 1], etc. In general, at stage n of construction, remove open
middle intervals of length,( LY+ Gom each remaining interval. The set of points
remaining after infnitely many stages of construction is the Smith-Volterra-Cantor
set. We call it the ‘thick’ Cantor set and denote it by K .1° (See Figures 10 and 11.)

BTo con?truct athick Cantor seinith measufre 1 § ¢ remove middle intervals of leln th 2¢(!)™!
at stalge n of construction. Over the course of the*construction we remove a total theastire of

P
2c 02" =2¢ D) =2c(H=c
! Figures10and 11 are licensed by Creative Commons.

74



Figure11: The set K. After white intervals have beenremoved, the black points
whichremainmakeup K.

What is the measure of K? Note that at each fnite stage n of construction
of K, 2" intervals of length (1—1)”+1 are removed, so the total measure of points

removed is

DaSI | X1 1
Zn(z)n+1 — (E)n+2 — —2

n=0 n=0

and M(K) =11/2=1/2.

Proposition 3.5.2. Let O be an open set with X Q;=p. Then K O has non-zero
measure. -

Proof. Let O be open and x K 0. Then, since x K, x is in a remaining
interval at each stage of construction of K. Let Ry xdenote the remaining interval
containing x at stage n of construction. The length of remaining intervals tends
to zero, so for N large enough, Ryxc O. But, by symmetry, m (K Rnx) =
(%)N +250. (At stage N of construction, there are 2N+ remaining intervals and
they split the measure of K equally). Thus

m(KnN O) = m(KN Rnx) >0
O

We can construct a ‘scaled copy’ of K by starting from the interval [a, b] instead
of [0, 1], and successively removing middle segments of length @ a)(})2*2. In
fact, we can carry out the construction of K on any closed, open, or half-open
interval[a, b],(a, b),[a, b),(a, b]. If westartfrom the openinterval (a, b), there-
sulting set is not closed (compact, efc.) and hence differs in important topological
properties from K. Nevertheless, with slight abuse of notation, we refer to all such
constructions as ‘scaled copies” of K. Clearly the measure of a scaled copy of K
onany of the intervals[a, b],(a, b),[a, b),(a, b] isjust l(2b @

We state without proof an obvious corollary to Proposition 3.5.2:

Corollary 3.5.3. Let K* be a scaled copy of K. If O is open and O N K* is non-
empty, then O N K* has non-zero measure.
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We are now, fnally, in a position to prove Proposition 3.3.10, which states that
M & Gee 3.3). The example is due to Dana Scott, but we give a different proof
here. -

Proof of Proposition 3.3.10. We claim that K £ G (and thus M & G). We need to
show thatforany openset O, Kryl O. Suppose O € [0, 1]isopenand O ~ K. We
know ON K 6= (else K< O4 Kand Oryl K). Let x € O N K. By the proof
of Proposition 3.5.2, there exists & N with Ry x O (Where Ry xis, again, the
remaining interval at stage n containing x). But at stage n + 1 of construction of
K, we remove from Rn,xan open interval, I, of non-zero measure. So I = O @K
andand Kryl O. 1. O

3.5.2 Construction of a truth preservingmap

We now construct the map g mentioned above, that will transfer completeness
from fnite topological spaces (= fnite Kripke S4 frames) to the Lebesgue measure
algebra.

Let F U, R, wo be a fnite rooted S4 Kripke frame (= fnite topology),
where U = fwo, . .., Wwm.

Preliminary to constructing the map, g, we defne a sequence of approximating
functions, gij (i eN).

Webegin by constructing go. Recall the construction of the thick Cantor set,
K, given above. We will denote the union of open intervals removed at the nth
stage of construction of Kby On(n > 0). Now we put,

¢

go(x) = ws if x Opandn=s(mod m)

otherwise

Note that golabels each point in the thick Cantor set, K, by wo, and that all
other points belong to some open interval that is uniformly labeled under goby
somenode (or other) in U. If Iisa maximal such interval (i.e., there does not exist
an open interval I’ such that I I’ and I' is uniformly labeled under go), then we call
Ia’removed interval under go.” This completes our construction of go.

Now suppose that the function gjis defned on every point in [0,1], and that
under gjthere is some countable collection of disjoint open intervals uniformly
labeled under giby some node (or other) in U. Moreover, assume that each of
these intervals, I, is maximal in the sense specifed above (i.e., there does not exist
an open interval I' such that 7 ~ I'and I'is uniformly labeled under gi). We call
these intervals the ‘removed intervals of gi.” For each such interval, I, uniformly
labeled by wx € U, we now put Uy = {w € U| wxRw} and we denote by ny
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the cardinality of Uk. Finally, we order the elements of Uxin some way, putting
Uc= ug, w2, . . ., um,. We now repeat the construction given above, on the
interval I. That is, denoting by Onthe union of open intervals removed at stage n
of the construction of K(I), welet, for x € I

¢

gis1(x) = us ifx Opand n = s (mod my) (3.6)
Wi otherwise
For all x ¢ [0,1] such that xdoes not belong to a removed interval of gj, we put
gi+1(x) = gi(x).
Note that under gi+1 there is a countable collection of maximal (in the sense
defned above) uniformly labeled open intervals. We call these intervals the ‘re-
moved intervals of gi+1.” This completes our construction of the maps, gi (i € N).
Note that some points x € [0, 1] belong to a ‘removed interval of g/ for each
i ¢ N. Wedenote the collection of all such points by L. We denote the collection
of all other points in [0,1] by B. Thus, the interval [0,1] is the disjoint union of L
and B.

For each x € B, there exists i € N such that

for all j > i, gj(x) = gi(x)

Let us denote the least such i by ix.
We are now ready to defne the function g : B — F as follows:

9(x) = gi(x) (3.7)

forall x € B.

3.5.3 Completeness proof

We need to show that the map g : B, pdefned in the previous section satisfes
the conditions of Proposition 3.4.6. In other words, we need to show that g is
interior, surjective and satisfes the M-property. Also, we need to show that the
measure of the set Bis 1. The work of this section is devoted to that end.

In what follows, let gi (i € N), g, B and L be as defned in the previous section.

Lemma 3.5.4. Forall x € [0, 1], i € N,
gi(xX)Rgi+1(x)

Proof. By construction of gi. O

77



Lemma 3.5.5. Suppose x € B, g(x) = w, and wRW!. Then for any E > 0, there

exists y € B such that |x @y| <Eand g(y) = w.

Proof. Let x ¢ B, g(x) = w, and wRwW. Then since x c B, there exists ¢ N
such that for all j <7, x belongs to a removed interval of gj and x does not belong to
any removed interval of gi+1. By construction, this means that ¢ K(I) for
someremoved interval Jof g;. But then xbelongs to some remaining interval Rn,x
at each stage n of construction of K(I), and as we know, length (Rnx) —. O.
It follows that for N large enough, Ry xdB(x, E), where B(x, E) is the open
interval centered at xwithradius E. Butnow, by construction of gi+1, there exists
a removed interval I of gj+1, with I’ c Rn,x and gis1(L") = w). (To see this,
consider all the intervals removed during construction of the scaled thick Cantor

set K(I) between stages N and N + m of construction.) Again, by construction

of gi+2, for any y € K(I%), g(y) = w'. Thus we have,

y€e I' S Rnx S B(x,E)
and g(y) = w', as desired. O
Lemma 3.5.6. u(L) = 0. u(B) = 1.

Proof. Let Sjbe the union of removed intervals of gj (i € N). Then,

Si 2 Sj+1
and
L= \ S/
ieN

and m(Sp) = 1. It follows that m(L) = limj~.om(S). But m(Si+1)

L m($).Y7 So m(S) — 0, and m(L) = 0. Now we have m(B) = m([0, 1]) ;;
m(L) =1, O

Proposition 3.5.7. g is continuous.

Proof. Let U be an open subset of F, and suppose x € g®(U). Then x € B, so
by construction, there is some i M such that xbelongs to aremoved interval of g;
for all j  _i, and x does not belong to a removed interval of gj+1. Let Zj x be the
removed interval of gicontaining x. Then by construction of stagewise labeling

functions, for each y € I xwe have gi(y) = gi(x) € U. It follows from Lemma
3.5.4 that foreach pointy € ixN B, g(y) € U.Sox€ lixN B< g% (U). But

Iix N Bis open in B. Thus g®(U) is open. .

7By construction, and since m(K(D)) =3' m(J).
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Proposition 3.5.8. g is open.

Proof. Let O = Bbe open, and let w € g(O). Then there exists x € O such that
w = g(x). Suppose wRw'. By Lemma 3.5.5, there exists y € B such that y € O,
and g(y) = w’. Thus Uw S ¢(O), and g(O) is open. O

Proposition 3.5.9. g is surjective.

Proof. This follows from the fact that gis open and g ‘hits’ the root, wo, of F (i.e.,
there exists x € Bwith g(x) = un.) O

Proposition 3.5.10. g has the M-property.

Proof. (i) To see that for any set S c U, g@.(S) is Lebesgue measurable, let
w H . Note that by construction of g, g®'(w) is a countable union of scaled
copies of thick Cantor sets, K(I). Thus g®(w) is a countable union of Borel
sets, hence Borel. Since S is fnite, g®1(.S) is a fnite union of Borel sets, hence
Borel. (i) We need to show that for any open set O < [0, 1] and S ¢ U, if
g (S)n 06 0, then u(g®(S) n O) > 0. It is suffcient to prove this for the
case where S = {wj} for some w € U. Thus suppose O < [0, 1] is open, and
for some w € U, g®(w) N O 6= &. Then there exists x € g (w) N O. Since
X € B, there exists ¢ € I such that x belongs to a removed interval of g; for all  j
< i, and x does not belong to a removed interval of gj+1. By construction of the
stagewise labeling functions, x € K(I) for some removed interval I of gi'8, and
for every y € K(I), g(y) = g(x) = w. So K(I) < g®(w). But since x € K(I),
we know O N K(I) 6= @. By Corollary 3.5.3, u(O n K(I)) > 0. Now we have
0N K(I) € 0n g®(w). So

#(0 N g®(w)) = u(0 N K(D) >0

O
We now defne the function ® : B(F) — M by
o(S) = g¥(5)
forall Sc F.
Proposition 3.5.11. ® is an embedding.
Proof. Immediate from Proposition 3.4.6, Proposition 3.5.7, Proposition 3.5.8,
Proposition 3.5.9, and Proposition 3.5.10. -

ﬁwhere%(—D&'s,—agam,—theseaieeHopy of the thick Cantor set, K, on the interval, I

79



Proposition _3.5.12. Suppose that V 0 : B B(p) is a valuation, and defue the
valuation, V. = ® , V', over the algebra £ . Then for every formula a in L we
have:
V(a) =00 V(a)
and
V(a) = Imiff V'(a) = 15(F)

Proof. Immediate from Lemma 3.4.2, and Proposition 3.5.11. O

Theorem 3.5.13. S4 is complete for the Lebesgue measure algebra, M.

Proof. Let a be a non-theorem of $4 (i.e., 6 s4 a). Then a is refuted in some
fnite Kripke frame, F. That is, there is some algebraic model, hB(F), V' such

that V(a) = 1B(F). We defne the algebraic model hM, Vi, letting V = ® o vl
where ® is as defned above. By Proposition 3.5.12, V(a) & 1m, and a is refuted
in M. We have shown that for any a in the language L,

6's4aa = |=m a
O

We close this chapter by proving two interesting corollaries of the above theo-
rem.

We know, from Tarski’s proof of completeness of S4 for the reals, that any
non-theorem, a, of S4 can be refuted at a point in the real interval, i.e., there
is a valuation, V : P _B([0, 1]), and point x 0, 1] with x / V (a). The
next corollary states that if a is a non-theorem of S4, there exists a valuation,
V: P B([0, 1]), that refutes a at each point in a subset of [0, 1] of measure
arbitrarily close to 1.

Corollary 3.5.14. Suppose a is a non-theorem of S4. Then for any E > 0, there
exists a valuation, V : P — B([0, 1]), with u(V (a)) < E. Likewise, for any E >0

there exists a valuation V * : P — M, and an element s € M, with m(s) < E and
Vda) =s

Proof Sketch. Let a be a non-theorem of S4, and let E > 0. Then a is refuted in
some model, M = hB(F), V'i, where F is a fnite Kripke frame. We defne an
embedding, ®* : B(F) — M, using thick Cantor sets of measure 1 € E, but
otherwise identical to ®. Let K* be the thick Cantor set of measure 1 @ E. Then
stagewise labeling functions, g;, are constructed as before (see (3.6) above) but
using K* instead of K. Again, let g™ be the limit of stagewise labeling functions,
g; (see (3.7) above). Now g* is an interior, surjective map. We defne the valuation
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V : P — B([0, 1]) by putting V(P) = ¢g*® o V!, and by Proposition 3.4.4 we
have, for any formula ¢ in the language L, V (¢) = g® o V(¢). The reader can
now verify that K* < g (V'(=a)) = V(-a). It follows that u(V (- a)) > 1 @,
andu(V(a)) <E

For the second part of the corollary, we defne the valuation V: P — M by
V(P) = ®*o V! Again, ®*is an embedding!, and so for any formula ¢ _in
the language L we have V (p) = ®*o V!, The reader can again verify that K* <
®* o V(=a) = V(-a). It follows that u(V(-a)) = 1 §E and u(V(a)) <
E2 0

As a fnal corollary, we prove that Intuitionistic propositional logic (IPC) is
complete for the frame G. Let the propositional language Lo consist of a countable
set,P= Bn n|N gof tomic variables and be closed under binary connectives
—,\ aand unary operator . Recall that is a complete Heyting algebra. In
particular, for any elements x;"g G, there exists an element, x, yge G, called
the relative pseudo-complement of x with respect to y and defned by:

sup{ce Gl cAx=<y}

Let V: P — G be a valuation assigning propositional variables to arbitrary
elements of G. Weextend V by the following recursive clause:

V(p— w)=V(p) = V(yp)

(For the remaining connectives: Vis defned in the usual wayon &, v}, ¢
abbreviates ‘¢ _, | “and ‘@ ., y abbreviates’ep _, Y&y _ @)

For any formula ® ¢ Lo, let T (¢) be the Go del-Tarski translation of ¢ given
inductively as follows:

T(P) = DPfor all propositional variables P
(L) =1

T(pVw)=T(p) Vv T(v)
T(pAw)=T(p) A T(w)

T(p —~ w) =D(T (o) ~ T(y))

Godel and Tarski showed that “spc aiff ~s4 T(a) for any formula a € Lo.
Moreover, forany valuation V': P — M, wecandefnethevaluation, Vi: P — G,

YOne has to check, here, that when we use Cantor sets of measure ¥§ ¢ Lemma 3.5.6 still holds.
Wedonotcarry outtherelevantcalculationhere, butleaveittothereader.
Here uis used to denote both the standard Lebesgue measure on the reals, and the measure on

the Lebesgue measure algebra, M. Wetrust that this does notlead to undue confusion.
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by Vi(P) = V(DP). Itis easy to show that forany formula,a ¢ Lo, T(a) L1
and
Vi(a) = V(T (a))

2L In particular, V(T(a)) e G for each @ Lo (the Godel translation of any
formula is evaluated to an openelement).

Corollary 3.5.15. IPC is complete for G.

Proof. Suppose Oipc a. Then Osa T (a). By completeness of S4 for M, there
is a valuation V': P — M with V(T (a)) 6= [0, 1]. But letting Vibe defned as
above, we have Vi(a) = V(T (a)) = [0, 1], so a is refuted under Vjin G. U

The proof is by induction on the complexity of a.
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Chapter 4

Probabilistic Semantics for
Dynamic Topological Logic

Abstract. In this chapter we extend Dana Scott’s probabilistic semantics for the
basic propositional modal language to a more complex modal language with two
independent modalities. In particular, we give a probabilistic semantics for basic
dynamic topological logic. Dynamic topological logics were introduced in the
1990’s as a way of describing dynamic space, or a topological space together with
a continuous function acting on the space. The simplest dynamic topological logic
is S4C, which has both the usual necessity modality, ‘D’, and a new temporal
modality, ‘() We extend Scott’s probabilistic semantics to this bimodal logic.
The main result of the chapter is that S4 Cis complete for the Lebesgue measure
algebra. A strengthening of this result, also proved here, is that there is a single
probabilisticmodel inwhichallnon-theorems of S4C arerefuted.
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41 Introduction

Kripke frames for normal modallogics, consisting of a set of possible worlds to-
gether with a binary accessibility relation, are, by now, widely familiar. Butlong
before Kripke semantics became standard, Tarski showed that the propositional
modal logic S4 can be interpreted in topological spaces. In the topological se-
mantics for S4, a topological space is fxed, and each propositional variable, P, is
assigned to anarbitrary subset of the space: the set of points where Pis true. Con-
junctions, disjunctions and negations are interpreted as set-theoretic intersections,
unions and complements (thus, e.g., " @, ¢’ is true at all points in the intersection
of the set of points where ‘¢’ is true and the set of points where ‘¢ is true.) The
‘D’-modality of S4 is interpreted via the topological interior: ‘D¢’ is true at any
point in the topological interior of the set of points at which“ ¢’ is true.

In this semantics, the logic S4 can be seen as describing topological spaces. In-
deed, with the topological semantics it became possible to ask not just whether S4
is complete for the set of topological validities —formulas valid in every topologi-
cal space —but also whether S4 is complete for any given topological space. The
culmination of Tarski’s work in this area was a very strong completeness result.
In 1944, Tarski and McKinsey proved that S4 is complete for any dense-in-itself
metric space. One particularly important case was the real line, R, and as the
topological semantics received renewed interest in recent years, more streamlined
proofs of Tarski’s result for this special case emerged in, e.g., (5), (18), (26), (29),
and (38).

The real line, however, can be investigated not just from a topological point of
view, but from a measure-theoretic point of view. Here, the probability measure we
havein mind is the usual Lebesgue measure on the reals. In the last several years
Dana Scott introduced a new probabilistic or measure-based semantics for S4 that
is built around Lebesgue measure on the reals and is in some ways closely related
to Tarski's older topological semantics.

Scott’s semantics is essentially algebraic: formulas are interpreted in the Lebesgue
measure algebra, or the o-algebra of Borel subsets of the real interval [0,1], mod-
ulo sets of measure zero (henceforth, “null sets”). We denote this algebraby  n\g.
Thus elements ofpgre equivalence classes of Borel sets. In Scott’s semantics,
each propositional variable is assigned to some element gff . We say the value of
the propositional variable Pis that element of the algebra to which Pis assigned.
Conjunctions, disjunctions and negations are interpreted as meets, joins and com-
plements in the algebra, respectively. In order to interpret the S4 ‘D’-modality,
we add to the algebra an interior operator (defned below), which we construct
from the collection of open elements in the algebra, or elements thathavean open
representative. Unlike the Kripke or topological semantics, thereisnonotionhere
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of truth at a point (or at a “world”). In (11) and in (22) it was shown that $4 is
complete for the Lebesgue measure algebra.!

The introduction of a measure-based semantics for S4 raises a host of ques-
tions that are, at this point, entirely unexplored. Among them: What about natural
extensions of S4? Can we give a measure-based semantics notjust for S4 but for
some of its extensions that have well-known topological interpretations?

This chapter focuses on a family of logics called dynamic topological logics.
These logics were investigated over the last ffteen years, in an attempt to describe
“dynamic topological systems” by means of modal logic. A dynamic topological
systemis a pairpX, f jwhere X is a topological space and f7is a continuous func-
tion on X. Wecan think of fas moving points in X in discrete units of time. Thus
in the frst momentin time, xis mapped to f(x), in the second moment to f(f(x)),
and so on. The simplest dynamic topological logic is S4 C. In addition to the S4
‘D’-modality, ithas a temporal modality, which we denote by ‘Q’. Intuitively, we
understand the formula’QP’ assaying that “at thenextmomentin time, Pwill be
true.” Thus we put: x € V(QP)iff f(x) € V(P). In (19) and (37) it was shown
that S4C is incomplete for the real line, R. However, in (38) it was shown that
S4Cis complete for Euclidean spaces of arbitrarily large fnite dimension, and in
(10) it was shown that S4C is complete for R,

Theaim of this chapteris to givea measure-based semantics for thelogic S4C,
along thelines of Scott’s semantics for S4. Again, formulas will beassigned to
some element of the Lebesgue measure algebra, M - Butwhatabout the dynam-
ical aspect—i.e., the interpretation of thgy’-modality? Weshow that thereisa
very natural way of interpreting the ’-modality via operators on the algebra
M that take the place of continuous functions in the topological semantics. These
operatorscanbeviewedastransforming thealgebraindiscrete unitsoftime. Thus
one element is sent to another in the frst instance, then to another in the second
instance, and so on. The operators we use to interpret S4 C are O-operators: ones
that take “open” elements in the algebra to open elements (defned below). But
there are obvious extensions of this idea: for example, to interpret the logic of
homeomorphisms on topological spaces, one need only look at automorphisms of
thealgebrapg.

Adopting a measure-based semantics for S4C brings with it certain advan-
tages. Not only do we reap the probabilistic features that come with Scott’s sem-
tantics for S4, but the curious dimensional asymmetry that appears in the topolog-
ical semantics (where S4 Cis incomplete for R but complete for R?) disappearsin
the measure-based semantics. The main result of the chapter is that the logic S4C
iscomplete for the Lebesgue-measurealgebra. A strengthening of thisresult, also

'The proofs were arrived at independently and at roughly the same time.
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proved here, is that S4 C is complete for a single model of the Lebesgue measure
algebra. Due to well-known results by Oxtoby, this algebra is isomorphic to the
algebra generated by Euclidean space of arbitrary dimension. (Indeed, as we show
below, it is isomorphic to the reduced measure algebra generated by any separable
metric space together with a o-fnite, non-atomic Borel measure on the space.) In
other words, S4C is complete for the reduced measure algebra generated by any
Euclidean space.

4.2 Topological semantics for S4C

Let the language Lp,q consist of a countable set, P = {pn | n € N}, of propo-
sitional variables, and be closed under the binary connectives A, V, —, <, unary
operators, —, D, <, and a unary modal operator Q (thus, Lp qis the language of
propositional S4 enriched withanew modality, Q).

Defnition 4.2.1. A dynamic topological space is a pair hX, fi, where X is a topo-
logical space and f : X — X is a continuous function on X. A dynamic topo-
logical model is a triple, hX, f, Vi, where X is a topological space, f : X — X
is a continuous function, and V : P — P(X) is a valuation assigning to each
propositional variable a subset of X. Wesay that hX, f, Viis a model over X.

We extend V to the set of all formulas in Lp,q by means of the following
recursive clauses:

V(e Vv y)=V(p)u V(y)

V(~p)=X@V(p)

V(Do) = Int (V(¢))

V(Qo) = V()
where “Int’ denotes the topological interior.

Let N =2, f, V be a dynamic topological model. We say that a formula ¢
is satisfed at a point x X if x ¥ (@), and we write N, x = @. Wesay @ is true
in N(N F @) if N, x Fo for each xo X. We say ¢ is valid in X (=x ¢), if for
any model N over X, we have N = . Finally, we say @ is topologically valid if
it is valid in every topological space.

Defnition 4.2.2. The logic SA4C in the language Lp,q is given by the following
axioms:

— the classical tautologies,

-S4 axioms forD.
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(A1) Qe vV w) — (Qp v Qyp),
(A2) (Q-¢) — (- Q ),
(A3) QDep — D Q ¢ (the axiom of continuity)

and the rules of modus ponens and necessitation for both D and @ . Following (19),
we use S4C both for this axiomatization and for the set of all formulas derivable
from the axioms by the inference rules.

We close this section by listing the known completeness results for S4C in the
topological semantics.

Theorem 4.2.3. (Completeness) For any formula ¢ dp,q, the following are
equivalent:

(i) S4C " @

(ii) @ is topologically valid;

(iii) @ is true in any fnite topological space;
(iv) @ isvalid in R" for n > 2.

Proof. The equivalence of (i)-(iii) was proved by Artemov et. al. in (3). The
equivalence of (i) and (iv) was proved by Duquein (10). This was a strengthening
of aresult proved by Slavnov in (38). O

Theorem 4.2.4. (Incompleteness for R) There exists ¢ € Lp,q such that @ is valid
in R, but ¢ is not topologically valid.

Proof. See (19) and (37). O

4.3 Kripke semantics for S4C

In this section we show that the logic S4C can also be interpreted in the more
familiar setting of Kripke frames. It is well known that the logic S4 (which does
not include the “temporal” modality () is interpreted in transitive, refexive Kripke
frames, and that such frames just are topological spaces of a certain kind. It follows
that the Kripke semantics for S4 isjusta special case of the topological semantics
for S4. In thissection, we show that thelogic S4 Ccanbeinterpreted in transitive,
refexive Kripke frames with some additional ‘dynamic’ structure, and, again, that
Kripke semantics for S4C is a special case of the more general topological seman-
tics for S4 C. Henceforth, we assume that Kripke frames are both transitive and
refexive.
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Defnition 4.3.1. A dynamic Kripke frame is a triple hW, R, Gi where W is a set,
R is a refexive, transitive relation on W, and G ©: W — W is a function that is R-
monotone in the following sense: for any u, v € W, if uRv, then G(u) R G(v).

Defnition 4.3.2. A dynamic Kripke model is a pair hF, Vi where F = hW, R, Gi
is a dynamic Kripke frame and V : B.(W ) is a valuation assigning to each
propositional variable an arbitrary subset of W . We extend V to the set of all
formulas in Lp,q by the following recursive clauses:

VieVv y)=V(p)u V(y)

V(-p)=WeV(p)

V(Qg) = G¥(V ().

V(Do) ={we W|ve V(p) forall v e W such that wRv}

Given a dynamic Kripke frame K = §¥, R, Gj we can impose a topology
on Wvia the accessibility relation R. We defne the open subsets of W as those
subsets that are upward closed under R:

(*) O = Wis openiff x € Oand xRy impliesy € O

Recall that an Alexandroff topology is a topological space in which arbitrary
intersections of open sets are open. The reader can verify that the collection of
open subsets of Wincludes the entire space, the empty set, and is closed under
arbitrary intersections and unions. Hence, viewing W, R as a topological space,
the space is Alexandroff.

Going in the other direction, if Xis an Alexandroff topology, we can defne a
relation Ron Xby:

(@) xRy iff x is a point of closure of {y}

(Equivalently, y belongs to every open set containing x.) Clearly R is refexive.
To see that R is transitive, suppose that xRy and yRz. Let O be an open set
containing x. Then since x is a point of closure fgry , y O. But since y is a
point of closure forf ¥, z¢ O. So x is a point of closure for{ z and xRz. So
far, we have shownthat static Kripke frames, W, R correspond to Alexandroff
topologies. But what about the dynamical aspect? Here we invite the reader to
verify that R-monotonicity of the function Gis equivalent to continuity of Gin
the topological setting. It follows that dynamic Kripke frames are just dynamic
Alexandroff topologies.

In view of the fact that every fnite topology is Alexandroff (if X is fnite,
then there are only fnitely many open subsets of X), we have shown that fnite
topologies are just fnite Kripke frames. This result, together with Theorem 4.2.3
(ii1), gives the following completeness theorem for Kripke semantics:
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Lemma 4.3.3. For any formula ¢ cLp,q, the following are equivalent:
(i) S4C ¢
(ii) @ is true in any fnite Kripke frame (= fnite topological space).

In what follows, it will be useful to consider not just arbitrary fnite Kripke
frames, but frames that carry some additional structure. The notion we are after is
that of a stratifed dynamic Kripke frame, introduced by Slavnov in (38). We recall
his defnitions below.

Defnition 4.3.4. Let K = hW, R, Gi be a dynamic Kripke frame. A cone in K is
any set Uy = {w € W | vRw} for some v € W . We say that v is a root of Uy.

Noteinparticularthatanycone, Uy, in Kisanopensubsetof W—indeed, the
smallest open subset containing v.

Defnition 4.3.5. Let K = hU, R, Gi be a fnite dynamic Kripke frame. We say
that K is stratifed if there is a sequence hUt, . . ., Uni &f pairwise disjoint cones
in Kwithroots ui, ..., unrespectively, suchthat U =, Ui G(uk) = uk+1
k < n.and G is injective. We say the stratifed Kripke frame has depth n and (with
. 0 . .
sligh abuse of notation) we call ui the root of the stratifed frame.

Note that it follows from R-monotonicity of G that G(Ux) S Uk+1, for k < n.

Defnition 4.3.6. Defne the function CD (“circle depth”) on the set of all formulas
in Lp,q inductively, as follows.

CD(p) = 0 for any propositional variable p;
CD(@ Vv ) = max {CD(¢), CD(p)},
CD(—~¢) = CD(g);
CD(Dg) = CD(¢p);
CD(Qg) = 1 + CD().

We also refer to CD(¢p) as the Q-depth of ¢.

Lemma 4.3.7. Suppose the formula @ is not a theorem of S4C, and CD(¢p) = n.
Then there is a stratifed fnite dynamic Kripke frame K with depth n + 1 such that
@ is refuted at the root of K.

Proof. The proof is by Lemma 4.3.3 and by a method of ‘disjointizing’ fnite
Kripke frames. For the details, see (38). O
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4.4 Algebraicsemantics for S4C

We saw that the topological semantics for S4Cis a generalization of the Kripke
semantics. Can we generalize further? Just as classical propositional logic is inter-
preted in Boolean algebras, we would like to interpret modal logics algebraically.
Tarski and McKinsey showed that this can be done for the logic S4, interpreting
the D-modality as an interior operator on a Boolean algebra. In this section we
show that the same can be done for thelogic S4C, interpreting theQ-modality via
O-operators on a Boolean algebra.
We denote the top and bottom elements of a Boolean algebra by 1 and 0, re-

spectively.

Defnition 4.4.1. A topological Boolean algebra is a Boolean algebra, A, together
with an interior operator I on A that satisfes:

()1=1;

(R) Ia < o

(B) a = Ia;

(l4) La A b) = Ia A Ib.

Example 4.4.2. The set of all subset(X) of a topological space X with set-
theoretic meets, joins and complements and where the operator I is just the topo-
logical interior operator (for AcX, I(A) = Int(A)) is a topological Boolean
algebra. More generally, any collection of subsets of X that is closed under f-
nite intersections, unions, complements and topological interiors is a topological
Boolean algebra. Wecall any such algebraatopological feld of sets.

Suppose Aisatopological Booleanalgebrawithinterioroperator I. Wedefne
the open elements in A as those elements for which

Ia=a (4.1)

Defnition 4.4.3. Let Aiand Az be topological Boolean algebras. We say h :
A1 _A2is a Boolean homomorphism if h preserves Boolean operations. We say
h is a Boolean embedding if h is an injective Boolean homomorphism. We say h is
a homomorphism if h preserves Boolean operations and the interior operator. We
say h is an embedding if h is an injective homomorphism. Finally, we say A1 and
A2 areisomorphic if there is an embedding from A1 onto A2.

Defnition 4.4.4. Let A1 and A2 be topological Boolean algebras, and let h
A1 — Az. We say his an O-map if

(f) his a Boolean homomorphism
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(i) Forany c open in A1, h(c) is open in Aa.
An O-operator is an O-map from a topological Boolean algebra to itself.

Lemma 4.4.5. Let A1 and A3 be topological Boolean algebras, with interior op-
erators Iy and Db respectively. Suppose that h : A1 — A2 is a Boolean homomor-
phism. Then h is an O-map iff for every a € A1,

h(ha) < b(h(a)) 4.2)

Proof. We let G1 and G2 denote the collection of open elements in Aj and A2
respectively. (=) Suppose h is an O-map. Then h(lia) € G2by Defnition 4.4.4
(@). Also, ha < a, so h(l1a) < h(a) (h is a Boolean homomorphism, hence
preserves order). Taking interiors on both sides, we have h(lia) = b(h(l1a)) <
b(ha). (<) Suppose that for every a € A1, h(lia) < b(h(a)). Let ¢ € G1.
Then ¢ = hic, so h(c) = h(lic) < Bb(h(c)). But also, b(h(c)) < h(c). So
h(c) = b(h(c))and h(c) € Ga. O

We are now in a position to state the algebraic semantics for the language Lp q.

Defnition 4.4.6. A dynamic algebra is a paimA, R , where A is a topological
Boolean algebra and h is an O-operator on A. A dynamic algebraic model is an
ordered triple, hA, h, V i, where A is a topological Boolean algebra, h is an O-
operator on A, and V : P — A is a valuation, assigning to each propositional
variable p € P an element of A. We say hA, h, Vi is a model over A. We can
extend V to the set of all formulas in Lp q by the following recursive clauses:

V(ipVvw)=V(p) Vv V(y)
V(-9) = V(p)
V(Do) = IV (@)
V(Qp) = hV (¢)

(The remaining binary connectives, _, and , and unary operator, 3, are defned
in terms of the above in the usual way.)

We defne standard validity relations. Let N = hA, h, Vi be a dynamic alge-
braic model. We say ¢ is true in N (N |= @) iff V(@) = 1. Otherwise, we say
@ is refuted in N . We say ¢ is valid in A ( |=a¢) if for any algebraic model N
over A, N |= ¢. Finally, we let DMLa = {¢ | |=a ¢} (i.e., the set of validities
in A). In our terminology, soundness of S4C for A is the claim: S4C = DMLAa.
Completeness of S4C for Ais the claim: DMLa = S4C.
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Proposition 4.4.7. (Soundness) Let A be a topological Boolean algebra.  Then
S4C = DMLA.

Proof. We have to show that the S4C axioms are valid in A and that the rules of
inference preserve truth. Tosee that (A1) is valid, note that:

V(Q(e v v) = AV (p) vV V(y))
AV (9)) v KV ()) (h a Boolean homomorphism)
V(Qe v Q)

Thus VQ (ov w)—( @p viy) = 1. Validity of (A2) is proved similarly. For
(A3), note that:

V(QDg) = h(IV ()

In(V(p)) (by Lemma4.4.5)
=V(D Qo)

So VQDp) <V (D q@p) and V(QDe D @qp) = 1. This takes care of the
special @podality axioms. The remaining axioms are valid by soundness of S4
for any topological Boolean algebra —see e.g., (33). To see that necessitation for
Q preserves validity, suppose that ¢ is valid in A (i.e., for every algebraic model
N =hA, h, Vi, we have V(¢) = 1). Then V(Q¢) = (V(¢)) = A(1) =1, and
Qgisvalidin A. O

IA

4.5 Reduced measure algebras

We would like to interpret S4C not just in arbitrary topological Boolean algebras,
but in algebras carrying a probability measure —or “measure algebras.” In this sec-
tion we show how to construct such algebras from separable metric spaces together
with a o-fnite Borel measure (defned below).

Defnition 4.5.1. Let A be a Boolean o-algebra, and let u be a non-negative func-
tion on A, with u(0) = 0. We say u is a {feasure gy A if for any countable
collection {an} of disjoint elements in A, u( , an) = ,u(an).

If 1 is a measure on A, we say u is positive if 0 is the only element at which u
takes the value 0. We say u is o-fnite if 1 is the countable join of elements in A
with fnite measure.? Finally, we say uis normalized if u(1) = 1.

. . . W
2J.e., thereisacountable collection of elements A,in Asuch that L An= 1 and u(A,) < oo
foreachne N.
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Defnition 4.5.2. A measure algebra is a Boolean o-algebra A together with a
positive, o-fnite measure u on A.

Lemma 4.5.3. Let A be a Boolean o-algebra and let u be a o-fnite measure on
A. Then there is a normalized measure v on A such that for alla ¢ A u(a) =0

iff  a) = 0.

Proof. Singe u is o-fnite, there exists a countable collection{sp | n > 1} € A

such that n.1Sn=1 andu(sn) < % foreachn =1 WLOGwecanassume
the sp’s are pairwise disjoint (i.e., sSn A sm = 0for m& n). Forany a € A, let

X
Wa) = 2% u(a A sn)
n> u(sn)
The reader can verify that v has the desired properties. t

In what follows, we show how to construct measure algebras from a topological
space, X, together with a Borel measure on X. The relevant defnition is given
below.

Defnition 4.5.4. Let X be a topological space. We say that u is a Borel measure
on X if u is a measure defned on the o-algebra of Borel subsets of X.>

Let X be a topological space, and let u be a o-fnte Borel measure on X. We
let Borel(X) denote the collection of Borel subsets of X and let Null, denote
the collection of measure-zero Borel sets in X. Then Borel(X) is a Boolean o
algebra, and Nully is a o-ideal in Borel(X). We form the quotient algebra

M¥ = Borel(X)/ Null,

(Equivalently, we can defne the equivalence relation ~ on Borel sets in X by
A ~ Biff u(A 4 B) = 0, where 4 denotes symmetric difference. Then M b

K are

is the algebra of equivalence classes under ~.) Boolean operations in My
defned in the usual way in terms of underlying sets:

|Al v [B| = |AU B
|Al A [Bl = |AN B
YAl = X QA

Lemma 4.5.5. There is a unique measure v on \j ;(I such that A = u(A) forall
A in Borel(X). Moreover, the measure v is o-fnite and positive.

*Le., on the smallest o-algebra containing all open subsets of X.
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Proof. See (15, p. 79). O

It follows from Lemma 4.5.5 that M v is a measure algebra. We follow Halmos
9]

X X
(15) in referring to any algebra of the form M as a reduced measure algebra.*

Lemma 4.5.6. Let X be a topological space and let u be a o-fnite Borel measure
on X. Then for any |Al, |B] € My, #A| < |B| iff A< BU N forsome N €
Nullp.

Proof. (=)1f |A| < |B|, then |A| A|B| = |Al, or equivalently |A N B| = |Al. This
means that (AN B) 4 A € Nully, so A @B &€ Null,. ButA<c BU (A ¢ B).
(<) Suppose A € BU N for some N € Nully. Then AN (BU N) = A, and

|Al A |[BUN| = |Al.But |BU N| = |Bl,so0|A|l A |B| = |A|,and |A| < |B].

For the remainder of this section, let X be a separable metric space, and let
be a o-fnite Borel measure on X. Where the intended measure is obvious, we will

drop superscripts, writing Mxfor M ¥
So far we haveseen only that My# is a Boolean algebra. In order to interpret
the D-modality of S4C in M¥_ we need to construct an interior operator on this

%

algebra (thus transforming My into a topological Boolean algebra). We do this

via the topological structure of the underlying space, X. Let us say that an element
a € Mu isopenif a= |U| for some openset U < X. We denote the collection

u
X

of open elements in My by Gy (or, dropping superscripts, Gx).
Proposition 4.5.7. Gis closed under (i) fnite meets and (ii) arbitrary joins.

Proof. (i) This follows from the fact that open sets in X are closed under fnite
intersections. (ii) Let{ ai|i & e a collection of elements in G’% We need to
show that sup ¢ i & exists and is equal to some element in ‘y. Since X is
separable, there exists a countable dense set D in X. Legbe the collection of
open balls in X centered at points in Dwith rational radius. Then any open setin
X can be written as a union of elements in B. Let S be the collection of elements
B e Bsuchthat | B| < gjfor some i € I. Weclaim that

) L
supf{ailie }=| S|

. S .. .
First, weneed toshow that| — S|isanupperbound on{a;| i€ I}. Foreach
i € I, aj = |Uj| for some open set Uj & X. Since Ujis open, it can be written as

4In fact, Halmos allows as “measure algebras’ only algebras with a normalized measure. We
relax thisconstrainthere, inordertoallow for the ‘reduced measurealgebra’ generated by theentire
real line together with the usual Lebesgue measure. This algebra is, of course, isomorphiqig,t,
where Xis the real interval [0, 1], and xis the usual Lebesgue measure on X. This amendment was
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suggested by the anonymousreferee.
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a union of elements in B. Moreover, each of these glements is a member f S (if
BcpandB c U then B| < |Uj|= aj). So Uic  Sandaj= Ui|<| S
For the reverse ing:luality &) we need to show that if is an upper bound

on{ai| i€ B, then | S| < m. Let m = |M|. Note that S is countable (since
S - gnd ds countable). We can write S = {Bn N . Then foreach n N,
thereexis.tsiE {such’Fhat Bn| <& < m.By Legnmaél. '5’SB c MU N, for
some Np € Nully,. Taking unions, ,BnS MU , Ny, and n?Vn € Null,.

By Lemma4.5.5, |S| =| ,Bnl <m. O

We can now defne an interior operator, ¥, on M via the collection of open

u
X X

elements, Gy . For any a € My, let

Fa=supf{ceG'|c<a}
p% p%

Lemma 4.5.8. I, ds an interior operator.

Proof. For simplicity of notation, we let I denote I and let G denote G& Then
X X

(fr) follows from the fact that 1 € G. (I2) follows from the fact that a is an
upper bound on {c € G | ¢ < a}. For (B) note that by (12), we have Ila < Ia.
Moreover, if ¢ € G with ¢ < a, then ¢ < Ia (since Ia is supremum of all such
¢ Thus {c €Glc <al< {c €G|c <Ighnd Ia < IlaFor( K
note that since a A b < a, we have I(a A b) < Ia. Similarly, I{a A b) < Ib, so
I(a A b) < Ia A Ib. For thereverse inequality, note that Ia A Ib < a(since Ia < a),
and similarly Ia A Ib < b.So Ia A Ib < a A b. Moreover, Ia A Ib € G. It follows
thatIa A Ib < [ aA b). O

Remark 4.5.9. Is the interior operator I n)gn—trivial? (That is, does there exist

a € MY such that Ia 6= a?) Ts depends on the space, X, and the measure, p.
If we let X be the real interval, [0, 1], and let u be the Lebesgue measure on Borel
subsets of X, then the interior operator is non-trivial. For the proof, see (22). But
suppose u is a non-standard measure on the real interval, [0, 1], defned by:

¢y ifyec A
u(A) = wisether

Then Borel([0, 1])/Nully is the algebra 2, and both elements of this algebra are
‘open.” So Ia = a for each element a in the algebra.

Remark 4.5.10. The operator I§< does not coincide with taking topological in-

teriors on underlying sets. More precisely, it is in general not the case that for

AcC X I QAI) = |Int (A)l, where 'Int( A)’ denotes the topological interior of
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A. Let X be the real interval [0, 1] with the usual topology, and let u be Lebesgue
measure restricted to measurable subsets of X. Consider the set X @ Q and
note that | X € Q| = |X| (Q is countable, hence has measure zero).  We have:
A(X 9Ql) = F4XI) = ¥ () = 1. However, |Int (X §Q)| = |@] = 0.

Remark 4.5.11. Note that an element a € My isopen justin case I a = a.

3%
x a=sup{ce al =
Indeed, if ais open, then a € {c € G *cs al . So g
U u

u

Iq Also if I a,= aq, then a is the join of a collection of elements in G , gnd so
ac % Thisshows that the defnition of ‘open’ elements given above fts with the
defnitionin (1).

In what follows, it will sometimes be convenient to express the interior operator
L in terms of underlying open sets, as in the following Lemma:

S
Lemma 4.5.12. Let A € X. Then I (JA|) = | {Oopen | |O| < |Al}|

Proof. By defnition of Iyxly (Al = suplc e G |,¢ < |Al}. Let B and D be
as in the proof of Proposition 4.5.7, and let S be the collection of elements B € B

S
}Illg}/\a,tui §|—<J%go heﬁleﬁ tQT,/ﬂr} ?fhlslf’é"ﬁgo& on4 ?17 T AN = | Sl.
pen thi talgz open
set O € X can be written as a union of elements in B.) Thus, I (,_I,Igﬁ T Sﬁ)
S
O
| {Oopen||O| <|Al}]. X

WehaveshownthatM,*
together with the operator }f is a topological Boolean
algebra. Of course, for purposes of our semantics, we are interested in O-operators
on xqHow do such maps arise? Unsurprisingly, a rich source of examples

comes from continuous functions on the underlying topological space X. Let us
spell this out more carefully.

Defnition 4.5.13. Let X and Y be topological spaces and let p and v be Borel
measures on X and Y respectively. We say f : X — Y is measure-zero preserving
(MZP) if forany A = Y, U(A) = 0 implies u(f ¥(A) =0

Lemma 4.5.14. Let X and Y be separable metric spaces, and let u and v be o-
fnite Borel measures on X and Y respectively. Suppose B is a Borel subset of X

with u(ﬁ) = ,U(X) and f: B — Y is measure-zero preserving and continuous.
Defne h - M u by
X

hy'(141) = 1F%(4)
Then h‘f" is an O-map. In particular, if X = Y, then h‘f" is an O-operator.

Proof. First, we must show that h‘f‘ is well-defned.’
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Indeed, if |A| = |B|, then

*Note that by continuity of f, f#(A) is a Borel set in B, hence also a Borel set in X.
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(A 4 B) = 0. And since fis MZP, u (fél(A) 4 FOUB) = u(f9A4 B) =
0. So FO(A) ~ F¥(B). This shows that h |A| is independent of the choice of

representative, A. Furthermore, it is clear that h‘ 'is a Boolean homomorphism. To

see that it is an O—map, we need only show thatif c € GY, K 'yl(c) Gl
But if c € GYthenc = |U| for some openset U S Y. By continuity of
1(U) is open in B. So({@l(U) = O N Bforsome OopeninX. So

()‘fél(U)I |0l € O

By the results of the previous section, we can now interpret the language
of S4C in reduced measure algebras. In particular, we say an algebraic model
A, h, Vi is a dynamic measure model if A = ppMfor some separable metric
space X and a o-fnite Borel measure ¢ on X.

Weare particularly interested in the reduced measure algebra generated by the
realinterval, [0,1], together with theusual Lebesgue measure.

Defnition 4.5.15. (Lebesgue Measure Algebra) Let I be the real interval [0, 1] and
let A denote Lebesque measure restricted to the Borel subsets of I The Lebesgue
measure algebra is the algebra MA,

Because of it’s central importance, we denote the Lebesgue measure algebra
without subscripts or superscripts, by M. Furthermore, we denote the collection
of openelementsin M by G and the interior operatoron M by I.

As in Defnition 4.4.6, we let DMLm = {@ | |=m ¢} (i.e., the set of
validities in M). In our terminology, soundness of S4C for M is the claim:
S4C = DMLm. Completeness of S4C for M is the claim: DMLm & S4C.

Proposition 4.5.16. (Soundness) S4C S DMLwm.
Proof. Immediate from Proposition 4.4.7. N

Remark 4.5.17. The algebrapgis isomorphic to the algebra Leb([0, 1])/Nully
where Leb([0, 1]) is the o-algebra of Lebesque-measureable subsets of the real in-
terval [0, 1], and Nully is the o-ideal of Lebesgue measure-zero sets. This follows
from the fact that every Lebesque-measureable set in [0, 1] differs from some Borel
set by a set of measure zero.

4.6 Isomorphisms between reduced measure algebras

In this section we use a well-known result of Oxtoby’s to show that any reduced
measure algebra generated by a separable metric space witha o-fnite, nonatomic
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Borel measure is isomorphic tq\g. By Oxtoby’s result, we can think of as the
canonical separable measure algebra.

In the remainder of this section, ley denote the space [0, I]QQ (with the
usual metric topology), and let 6 denote Lebesgue measure restricted to the Borel

subsets of J .

Defnition 4.6.1. A topological space X is topologically complete if X is homeo-
morphic to a complete metric space.

Defnition 4.6.2. Let X be a topological space. A Borel measure yon X is
nonatomic if u({x}) = 0 for each x € X.

Theorem 4.6.3. (Oxtoby, 1970) Let X be a topologically complete, separable met-
ric space, and let u be a normalized, nonatomic Borel measure on X. Then there
exists a Borel set B < X and a function f: B — ) such that (X @ B) = 0and f
is a measure-preserving homeomorphism (where the measure onJ 1is 6).

Proof. See (30). O

Lemma 4.6.4. ® Suppose X and Y are separable metric spaces, and u and v are
normalized Borel measures on X and Y respectively. If f: X — Y is a measure
preserving homoemorphism, then M ﬁs isomorphic to MY .,

Proof. For simplicity of notation, we drop superscripts, writing simply Mx, Gx,

and Ix, etc. Let h‘,;‘ : My — Mx be defned by h‘,é‘(IAI) = [f9(A)|. This
function is well-defned because fis MZP and continuous. (The frst property
ensures that hl,';‘(IAI) is independent of representative A; the second ensures that f

9(A)is Borel.) Clearly hl,'r‘ is a Boolean homomorphism. We can defne the
mapping h‘.;“d : Mx — My by W VQAD = |fT{A)|. Then h‘,}‘ and B! L arg
inverses, so h‘,'c‘ is bijective. ~We need to show that hl,'c‘ preserves interiors—i.e.,
h‘fl‘(Iy a) = Ix hlf"(a). The inequality (<) follows from the fact that h‘fl‘ is an O-
map (see Lemma 4.5.14). For the reverse inequality, we need to see that h‘,'r‘(Iy a)
is an upper bound on {c € CGx|c < h‘,'c‘ga)}. If ¢ € Gx, then hH (c) € Gy

and if ¢ < h‘;‘(a), then 1’ (o) < ! l(h,'c‘(a)) = @ Thus & 1(¢) L% a, and
roe ro ro
c= Ry (H4(0) < Wy (Iva). O

®We can relax the conditions of the lemma, so that instead of requiring that fis measure-
preserving, we require only that v(f(S)) = 0 iff u(A) = 0. In fact, we can further relax these

conditions so that f: B C, where Bc X, C &¥, u(B 4X) = 0, and v(C 4Y) = 0. We
prove thelemmaas stated because only this weaker claim is needed for the proof of Corollary 4.6.5.
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Corollary 4.6.5. Let X be a separable metric space, and let u be a nonatomic
o-fnite Borel measure on X with u(X) > 0. Then,

My =M

Proof. By Lemma 4.5.3, we can assume that 4 is normalized.” Let Xcomp be the
completion of the metric space X. Clearly Xcomp is separable. We can extend
the Borel measure u on X to a Borel measure u™ on Xcomp by letting u™(S) =

u(S N X) for any Borel set S in Xcomp. The reader can convince himself that u*

~

is a normalized, nonatomic, o-fnite Borel measure on Xcomp, and that M Xeo r’,’,p =

M- By Theorem 4.6.3, there existsaset B < Xcompand a function f: B _. J
suchthatu™*(B) = 1and fisameasure-preservinghomeomorphism. By Lemma
4.6.4, Mj = Mp. We have:

*

M=Mj =M= M = M

Xcomp —

4.7 Invariance maps

At this point, we have at our disposal two key results: completeness of S4C for
fnite stratifed Kripke frames, and the isomorphism betweggh y and for any
separable metric space X and o-fnite, nonatomic Borel measure y. Our aim in
what follows will be to transfer completeness from fnite stratifed Kripke frames
tothe Lebesgue measurealgebra, \pfButhow to do this?

We can view any topological space as a topological Boolean algebra—indeed,
as the topological feld of all subsets of the space (see Example 4.4.2). Viewing
the fnite stratifed Kripke frames in this way, what we need is “truth-preserving’
maps between the algebras generated by Kripke frames anjj¥, for appropri-
ately chosen X and u. The key notion here is that of a “dynamic embedding”
(defned below) of one dynamic algebra into another. Although our specifc aim is
to transfer truth from Kripke algebras to reduced measure algebras, the results we
present here are more general and concern truth preserving maps between arbitrary
dynamic algebras.

Recall that a dynamicalgebrais a pair i, h jwhere A is a topological Boolean
algebra, and hisan O-operator on A.

"More expliciﬂg: If u is o-fnite, then by Lemma 4.5.3 there is a normalized Borel measure u*
on X such that 4*(S) = 0 iff u(S) = 0 for each S < X. It follows that M’;( = M”X(where the

isomorphism is not, in general, measure-preserving).
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Defnition 4.7.1. Let M1 = hA1, hii and Mz = hAz, hai be two dynamic alge-
bras. Wesay a function h: M1 — M2isa dynamic embedding if

(f) his an embedding of A1 into Az,
(i) ho hi=hyoh.

Lemma 4.7.2. Let M1 = A4, h1, Vignd M2 = 42, h2, V2j be two dynamic
algebraic models. Suppose that h @ pA1, hij — hA2, hyj is a dynamic embedding,
and for every propositional variable p,

Va(p) = h o Vi(p)

Then for any @ € Lp,q,
Va(p) = ho Vi(9)

Proof. By induction on the complexity of ¢. O

Corollary 4.7.3. Let M1 = Y1, h1, Vjand M2 = K2, h2, V3 be two dynamic
algebraic models. Suppose that h : WA1, hij — hA2, hyj is a dynamic embedding,
and for every propositional variable p,

V2(p) = h o Vi(p)

Then for any @ € Lp,q,
M=o iff Mal=¢
Proof. Mz |= @iff Va(¢) = 1
iff ho Vi(p) =1 (by Lemma4.7.2)

iff V1 = 1 (since h is an embedding)
O

Let X, F he a dynamic topological space and let Ax be the topological feld
of all subsets of X (see Example 4.4.2). We defne the function hr on Ax by

he(S) = F9(S)

It is not diffcult to see that hris an O-operator. We say thap Ax, hjis the
dynamic algebra generated by (or corresponding to) to the dynamic topological
space KX, F j

Our goal is to embed the dynamic algebras generated by fnite dynamic Kripke
frames into a dynamic measure algebrhhﬁxh , where X is some appropriately
chosen separable metric space and u is a nonatomic, o-fnite Borel measure on X.
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In view of Corollary 4.7.3 and completeness for fnite dynamic Kripke frames, this
will give us completeness for the measure semantics. The basic idea is to construct
such embeddings via ‘nice” maps on the underlying topological spaces. To this
end, we introduce the following new defnition:

Defnition 4.7.4. Suppose X and Y are a topological spaces, and u is a Borel
measure on X. Let y : X — Y . We say y has the M-property with respect to u if
for any subset S S Y:

() y®(S) is Borel;

(i) for any open set O € X, ifyol(S) NO6 0 then u(y®(S)n 0) >0.
Lemma 4.7.5. SupposepX, Fijis a dynamic topological space, where X is a sep-
arable metric space, F is measure-zero preserving, and let u be a o-fnite Borel

measure on X with u(X) > 0. Suppose hY, Gi is a dynamic topological space,
and hAy, hai is the corresponding dynamic algebra. Let Bbe a subset of X with

u(B) = u(X), and suppose we have a map y: B — Y that satisfes:
(i) yis continuous, open and surjective;

(ii)) yo F=Goy;

(iii) yhas the M-property with respect to .

Then the map @ : hAy, hgi — hM{¥, hei defned by

(S) = [y%(s)|

is a dynamic embedding.

Proof. By the fact that My s isomorphic to Mg, we can view ® as a map from

KAy, hejinto h\# he fwhere hgis viewed as an operator on\ g. Note that
® is well-defned by the fact that y satisfes clause (i) of the M-property. We
need to show that (i) ® is an embedding of hAy, hgi into hMgi hi, and (i)

Do hg = h‘,;-‘oCD_

(i) Clearly @isaBooleanhomomorphism. Weprovethat ®isinjectiveand pre-
serves interiors.
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+ (Injectivity) Suppose ®(S1) = ®(S2) and S1 6= S. Then vo(S1) ~
vo(S2), and S1 4 S = @. Lety € S1 4 Sp. By surjectivity of y,
we have y®(y) & 0. Moreover, u(y®(y)) >0 ('since y has the M-
property w.r.t. 4,and theentirespace Bisopen). So u(y®(S1)4 v () =
u(y®(S1 4 $2)) = u(y®(y)) > 0. And (1) 6~ (). L.

. (Preservation of Interiors) For clarity, we will denote the topological
interior in the spaces Y and B by Inty and Intgrespectively, and the
interior operator on M4by I. Let S € Y. It follows from continuity

and openness of y: B — Y, that
y®(Inty (S)) = Ints(v®(S))

Note that,
- O(Inty (S)) = |y*(Inty (9)) |
= | Inta(y*(9)) |
=| {OopeninB | Oc yel(S)}I
- (®(S) =1 |si§>1(S)|
=| {OopeninB | 0] < |y*(S)|}| (Lemma4.5.12)

Thusitissuffcient toshow thatforany openset O< B,
0 < y*(8)iff |O] < [y*(3)]

The left-to-right direction is obvious. For the right-to-left direction,
suppose (toward contradiction) that O] < IVOI(S)I but that O 6<
v®(S). Then O < y#(S) U N for some N € B with u(N) = 0.
Moreover, since O 6c y@(S), there exists x € O such that x ¢
v(S). Let y = y(x). Then y®(y) N O 6 . Since y has the
M-property with respect to y, it follows that u(y®(y) n 0) > 0.
But y?(y) N O € N (since y®(y) N O < O < y?(S) U N, and
v (y) N y*(S) = @). L.

We've shown that @ is an embedding of hAy, hai into hM ,‘h i niggelx{v

of the isomorphismbetween M H and M , we have sho B F

u
X B wn that

embedding of hAy, hai into My .

(i) Weknow that yo F = Goy. Takinginverses, wehave F o yol = 01, GO
Nowlet Sc Y. Then:
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® o he(S) = |y?U(GO(S))l
= |F 9(y9(9))]
= th.lo (D(S)

4.8 Completenessof S4C forthe Lebesgue measure alge-
bra with O-operators

In this section we prove the main result of the chapter: completeness of S4C for
the Lebesgue measure algebra, M. Recall that completeness is the claim that
DMLwm < S4C. Infact, we prove the contrapositive: Forany formula ¢ € Lp q, if
@ S4C, then ¢ / DMLwm. Our strategy is as follows. If ¢is a non-theorem of
S4C, thenby Lemma 4.3.7, pis refuted in some fnite stratifed Kripke frame K =
hW, R, Gi. Viewing the frame algebraically (i.e., as a topological feld of sets), we
must constructa dynamicembedding ® : hAw, hgi — hM, hi, where hAw, haiis
the dynamic Kripke algebra generated by the dynamic Kripke frame K, and his
some O-operatoronM.Inview of theisomorphismbetween Mand yforany
seEarable metric space, X, and nonatomic, o-fnite Borel measure u on X with u(X)
M >0, itis enough to constructa dynamic embedding of the Kripke
algebra int0|\‘/l|,xfor appropriately chosen X and u.

The constructions in this section are a modifcation of the constructions intro-
duced in (38), where it is proved that S4 Cis complete for topological models in
Euclidiean spaces of arbitrarily large fnite dimension. The modifcations we make
are measure-theoretic, and are needed to accommodate the new “probabilistic” set-

ting. Weare very much indebted to Slavnov for his pioneering work in (38).%

4.8.1 Outline of the proof

Let us spell out the plan for the proof a little more carefully. The needed ingredients
are all set out in Lemma 4.7.5. Our frst step will be to construct the dynamic
topological space, X, F ;where Xis a separable metric space, and F is a measure-
zero preserving, continuous function on X. Wemust also construct a measure u
on the Borel sets of X that is nonatomic and o-fnite, such that u(X) > 0. We

want to embed the Kripke algebrg Aw, ke intq, v 5(hl 'l sand to do this, we
must construct a topological map y: B W, wﬂ/elre B Xand u(B) =1,

and ysatisfes therequirements of Lemma4. 75.In particular, wemustensure that

!Where possible, we have preserved Slavnov’s original notation in (38).
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(9 vy is open, continuous and surjective, (i) yoF = G y and (iij) y has the M-
property with respect to u.

In Section 8.2, we show how to construct the dynamic spacg, X, Fj, and the
Borel measure ¢ on X. In Section 8.3, we construct the map y : X, W, and
show that it has the desired properties.

4.8.2 The topological carrier of countermodels

Let
Xn=Il t"'tI”

where ¥is the k-th dimensional unit cube andgdenotes disjoint union. We would
like X to be a metric space, so we think of the cubes I¥as embedded in the space
R", and as lying at a certain fxed distance from one another. For simplicity of
notation, we denote points in K by (xi, . .., xx), and do not worry about how
exactly these points are positioned in R".

For each k < n, defne the map F: K- 1 by (x1, ..., x) 7— (xt, .. ., xk,zl—).
Welet

| F(x) ifx€l,k<n
Flx) =

Clearly Fisinjective. Foreach k > 2we choose a privileged “midsection” Dx =
[0,1]¥91 {%—}rof Ik. Thus, f (Ik) = Dk+1for k <n.

The space Xnwill be the carrier of our countermodels (we will choose n ac-
cording to the &?lepth of the formula which we are refuting, as explained in the
next section). We defne a non-standard measure, u, on Xn. This somewhat un-
usual measure will allow us to transfer countermodels on Kripke frames back to
the measurealgebra, My .

Let ¢ on I1 be Lebesgue measure on R restricted to Borel subsets of 1.
Suppose we have defned uon £, . .., . For any Borel set Bin F*!, let

B1 = BN Dg+1, and B2 = B\ Dg+1. Then B = B; t B2. Wedefne

u(B) = u(F ¥ (By)) + A(By)
where Ais the usual Lebesgue measure in R¥*1, Finally, for any Borel set B € Xp,

P
we let u(B) = ']{z,u(B N 19
Note that u(1!) :é, and in %eneral u(FY = u(F) + 1. Thus u(Xn) =
wIt - ') = ] k=5n’ n).

Lemma 4.8.1. u is a nonatomic, o-fnite Borel measure on Xn.
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Do D3

n 2 B

Figure 12: The space X3 = e Izt B.Note that u() = 1, u(P) = 2, and
u(P) = 3. The shaded regions in P and P denote the midsections, Dz and D3,
respectively.

Proof. Clearly u is nonatomic. Moreover, since u(Xn) < oo, u is o-fnite. The
only thing left to show is that i is countably additive. Suppose thgt Bm menis a
collection of pairwise disjoint subsets of Xy.

Claim 4.8.2. Forany k < n,

L
u(_ (BnnI9) = u(Bm N 1)
x

m

(Proof of Claim: By inductionon k.%)
Butnow wehave:

‘The base caseis by countable additivity of Lebesgue measure on the unitinterval, [0,1]. For the
induc"?n step, suppose the Clainli_s truefor k 1. Thenwehave:
pC Ban 1) = ulFC " Ban N DN +Al  Ban Y\ D1 (Defn. ofp)

m m m

L
= y[XF*’(Bm NIFENDY+ A(Bnn I\ DY (Count. Add. of A)
X m
= xy[F“(Bm NFENDH+  AMBanI)\DH (IH)
X m
= wulF®BnnI'n DY+ A(Bnn I\ DY
ple
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= (BanIY (Defn. of u)
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C X L
u( Bm)=  u[( Bm)nI] (bydefnitionof u)
" I
=yl (BnnI9]

m

xX
= u(Bmn I¥)  (by Claim 4.8.2)

m

X
1(Bm N I¥)

X

m_ k

u(Bm)  (bydefnitionof u)

m

O

Lemma 4.8.3. X is a separable metric space and F . Xa Xn is measure-
preserving and continuous.

Proof. The set of rational points in ¥ is dense in k (k < n), so Xnis separable.
Continuity of F follows from the fact that F is a translation in R"; F is measure-
preserving by the construction of u. O

4.8.3 Completeness

Assume we are given a formula ¢ Lp,q such that ¢ is not a theorem of S4C

and let n = CD(¢) + 1. By Lemma 4.3.7, there is a fnite stratifed, dynamic

Kripke model K = WV, R, G, V1 pf depth n such that ¢ is refuted at the root of

K. In other words, there is a collection of pairwisesdisjoint cones Wh,..., Wy

withroots ug, ..., uf respectively,suchthat W=, _ Wj; Gisinjective;and
: <

G(wx) = wk+iforeach k <myand K, wy |= ¢. Letthe space X = X =

I' " .apd the measure u be as defned in the previous section. We construct

amapy : X _, W ina countable number of stages. To do this we will make

crucial use of the notion of E-nets, defned below:

Defnition 4.8.4. Given a metric space S and E > 0, a subset Q of S is an E-net
for Sif forany y ¢ S, there exists x ~ Q such that d(x, y) < E (where d denotes
the distance function in S).

Observe that if S is compact, then for any E > 0 there is a fnite E-net for S.

Basic Construction. Let w! = wt, gnd letwr,...,wr be the R-successors
root 1
1

of t. At the frst stage, we select r1 pairwise disjoint closed cubes R
in %),r??laking sure that ﬁ‘leir total measupi‘e adds up t(]) no more than (el—)alz—that 1
2

is, ,_, u(Ty) < 14. For each xin the interior of T welet (x) = {k<7r). 1

107



With slight abuse of notation we put V(Tx) = wk. We refer to Ti,..., Tr, as
terminal cubes, and we let Il1 =1 ¢ " Int(T).

/

At any subsequent stage, we assume we are given a set I !thatis equal to I 1
with a fnite number of open cubes removed from it. Thus J lis a compact set. We
fnd a Lnet Q;for I' and for each point y € Qj, we choose r1 pairyise disjoint
closed E(I;bes, ’T9, .., I” 1 thie llI—)neigilll%orhoéd of y, puttingpﬁ TY}S =W (}(Lr

1 r 27 k
k #1, with the same meaning as above). Again, we refer to the T's as terminal
cubes. Since Qjis fnite, we create only a fnite number of new terminal cubes at

this stage, and we make sure to do this insucha way as toremove a total measure
of no more than (=)"%. Welet I' be the set I' minus the interiors of the new

2 i+1 i
terminal cubes.

After doing this countably many times, we are left with some points in P that
do not belong to the interior of any terminal cube. We call such points exceptional
points and we put 7{x) = w!  for each exceptional point x € I'. This completes

the defnition of y.on I*. . . : ;
Now assume that we have already defned y on 7. We let u/ o/ +1Oand

root

letwt, ..., wr,,, bethe R-successors of u/ Jrro{) We defne yon P+ as follows. At
frst we choose 7j+1 closed cubes T4, ..., Tr ., in P*1, putting {(Tk) = wk (for
k < 1j+1). In choosing T1, . . ., Tr,,,, we make sure that these cubes are not only
pairwise disjoint (as before) but also disjoint from the midsection Dj+1. Again,
wealsomakesuretoremoveatotalmeasure of nomore than (1%0+2 u(F+1). we

J+1 i+1 S+l
letd =77 @ k=1 Int(T). ,

At stage 1, we assume we are given a set lj’+ ! equal to ¥ ! minus the inte-
riors of a fnite number of closed cubes. Thus I/‘+1 is compact, and we choose a

fnite L2—;1r1e’c Qifor 7" 1. Foreach y € Qiwe choose 7j+1 closed terminal cubes
Ti,...,Tr, inthe 1;—neighborhood of y. We make sure that these cubes are not
only pairwise disjoint, but disjoint from the midsection Dj+1. Since Qjis fnite,

we add only fnitely many new terminal cubes in this way. It follows that there is
an E-neighborhood of Dj+1 thatis disjoint from all the terminal cubes added up

to this stage. Moreover, for each terminal cube T of Z defned at the ith stage, F

(T) Dj+1, andwelet T Obe some closed cube in #+1 containing F(T') and of
height at most E. To ensure that the equality ¥ F (x) = G ¥(x) holds for all
points xbelonging to the interior of terminal cubes of ¥, we put:

T = Go H(T)

Finally, we have added only fnitely many terminal cubes at this stage, and we do

so in sych a way as to make s%}‘g; that the total I;-Qelasure of these cubes is no more

than (2—)’+ u(rF*tt). Welet 77 Pe the set 7~ = minus the new terminal cubes
1+ 1

added at this stage.
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We iterate this process countably many times, removing a countable number
of terminal cubes from F*1. For all exceptional points xin *1 (i.e., points that
do not belong to the interior of any terminal cube defned at any stage) we put
V(x) = mo . Noting that exceptional points of Z are pushed forward under F to
exceptional points in Z*1, we see that the equality ¥ o F(x) = G J(x) holds for
exceptional points as well.

This completes the construction of ¥ on X. We pause now to prove two facts
about the map ¥ that will be of crucial importance in what follows.

Lemma 4.8.5. Let E(F) be the collection of all exceptional points in F for some
Jj < n. Then u(E(¥)) = Su(¥).

Proof. At stage i of construction of ¥ on ¥, we remove from ¥ terminal cubes
of total measure no more than (1 ¥+2 u( ). Thus over countably mapy st?ges

weremoveatotal measure ofno mor than u(¥) (2)’+2 = 5u(l'). The
remammg points in ? are all exceptional, so ,u(E(I/)) > u(l) @* ,ugl’)
u(F). O

Lemma 4.8.6. Let x ¢ P be an exceptional point for some j  n. Then y(x) =
wG, and for any E > 0 and any wx ¢ Wj there is a terminal cube T contained in
the E-neighborhood of x with Y(T) = wk.

Proof. Since x € 7 is exceptional it belongs to Ifor each i € N. We can pick i
large enough so that 1. E > But then in the notations above, there exists a point
y <€ Qjsuchthatd(x, y) <= il" hestatementnow followsfromthe Basic Construc-
tion, since for each wk € Wjthereis a terminal cube Tkin the ——ng1ghborhood of

y (and so also in the 2ne1ghborhood of y) with (Tk) = wk. O

Construction of the maps, y;. In the basic construction we defned a map y
: X W that we will use in order to construct a sequence of ‘approximation’
maps, Vi, y2, V3, - - - .., where y1 = . In the end, we will construct the needed
map, y, as the limit (appropriately defned) of these approximation maps. We
begin by putting y1 = V. The terminal cubes of y1 and the exceptional points of y1
are the terminal cubes and exceptional points of the Basic Construction. Note that
eachof I, . .., I" contains countably many terminal cubes of y1together with
exceptional points that dont belong to any terminal cube.

Assume that yjis defned and that for each terminal cube T of yj, all points in
the interior of T'are mapped by yto a single element in W, which we denote by
vi(T). Moreover, assume that:

(i) yieF=Goy
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(ii) foranyterminalcube T of yjin ¥, Fmaps T into some terminal cube 79 of
yin F*l forj<n

where F is again the embedding (x1,...,x7) 7 (xt,...,%5, 12).

We now defne y+1 on the interiors of the terminal cubes of y;. In particular,
for any terminal cube T of yjin Il, let T1= T and let T/*! be the terminal
cube of F*1 containing F(T7), for j < n. Then we have a system T, ..., T"
exactly like the system I, ... , I in the Basic Construction. We defne yj+1 on
the interiors of T 1 . T"in the same way as we defned yon I 1 ..., I, letting
Whoot = vi(T/) and letting wi, . .., Wz be the R-successors of w oo - The only
modifcation we need to make is a measure-theoretic one. In particular, in each
of the terminal cubes 7/, we want to end up with a set of exceptional points that
carries non-zero measure (this will be important for proving that the limit map we
defne, y, has the M-property with respect to ). To do this, assume y+1 has been
defnedon T3, ..., T/, and that for k < j, u(E(T %)) > 17/1(Tk), where E(T*)
is the set of exceptional points in TX. When we defne yi+1 on T/, we make

sure that at %Lezfrst sta§e we remove terminal cubes with Eltotal measure of no

more thanzl— u(P*L). At stage i where we are given 7”7~ we remove terminal
!

cubes with a total measure of no more than gl—)" 2 (T, Again, this can be
donebecauseateachstage iweremoveonly afnitenumber of terminal cubes, so

we can make the size of these cubes small enough to ensure we donot exceed the
allocated measure. Thus, over countably many stages we remove from T/ a total

measure of no more than u(T/*1) o (1)*2 = Ly(T/*1). Letting B(T/*1)

2
2 2

be the set of exceptional points in 71, we have u(E(T'*1)) 5 Lu(T/*1).

We do this for each terminal cube T of yjin I'. Next we do the same for all
the remaining terminal cubes T of yjin P (i.e., those terminal cubes in P that
are disjoint from D7), and again, for all the remaining terminal cubes T of yjin
B (the terminal cubes in P that are disjoint from D3), etc. At the end of this
process we have defned yj+1 on the interior of each terminal cube of y;. For any
point x X that does not belong to the interior of any terminal cube of y;, we put
Vi+1(x) = yi(x). The terminal cubes of yj+1 are the terminal cubes of the Basic
Constructionapplied to each of the terminal cubes of y;. The points in the interior
of terminal cubes of yjthat do not belong to the interior of any terminal cube of
yi+1aretheexceptional points of yj+1.

In view of the measure-theoretic modifcations we made above, we have the
following analog of Lemma4.8.5:

Lemma 4.8.7. Let I ¢ N and let T be any terminal cube of yjand E(T ) be the set
of exceptional points of yi+1in T . Then
1
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H(E(T)) =, u(T)
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Furthermore, the reader can convince himself that we have the following analog
of Lemma4.8.6for themaps yi:

Lemma 4.8.8. Let x be an exceptional point of yjand let y(x) = w. Then for any
E > 0 and any v such that wRv, there is a terminal cube T of yj contained in the E-
neighborhood of x with y(T) = v.

Finally, note that if x is an exceptional point of y;for some [, then y(x) =
Vi+k(x) for any k € N. We let B denote the set of points that are exceptional for
some Yy}, and defne themap y: B — W asfollows:

V(%) = lim yi(x)

[— o0
Lemma 4.8.9. u(B) = u(X).

Proof. Let Tbe the set of all points that belong to some terminal cube of y;. Note
that T) 2 Tj4+1 for I € N, and u(T1) is fnite. Thus u( ; T7) = lim/—. o /J(T/)I.: 0.
B=X¢

O
(Thelimit value follows from Lemma+4.8.7.) Finally, note that ;T

So Bis Borel, and u(B) = u(X) @ u( ; T))= u(X).

We have constructed a map y: B — W where u(B) = u(X). Moreover,
by the Basic Construction, we have y F (x) = G vyi(x) for each I N. It
follows that B F (x) = G y(x) for x B. All that is left to show is that (i) y is
continuous, open, and surjective; and (ii) yhas the M-property withrespect to 4.

Lemma 4.8.10. y has the M-property with respect to p.

Proof. We show that for any subset S € W, (i) y#'(.S) is Borel; and (ij) for any
openset O € X, if v¥(S) N 06= @ then u(y?(S) N O) 6= 0. Note that since W
is fnite, itis suffcient to prove this for the case where S = {w} forsome we W.

(i) Note that x € y9!(w) iff xis exceptional for some yjand x belongs to some

terminal cube T of yi¢1, with yi¢1(T") = w. There are only countably many
such cubes, and the set of exceptional points in each such cubeis closed. So

Vél( w) is a countable union of closed sets, hence Borel.

(ii) Suppose that Ois openin X with v (w) N 06= . Letx € y*(w) n O.

Again, xis exceptional for some y;. Pick E >0such that the E-neighborhood
of x is contained in O. By Lemma 4.8.8, there is a terminal cube T of y
contained in the E-neighborhood of x such that y(T) = w (since wRw).
Letting E(T) be the set of exceptional points of yj+1in T, we know that
B(T) < y*(w). But by Lemma 4.8.7, u(E(T)) = L4(T) > 0.S0 E(T)

is a subset of y®(w) N O of non-zero measure, and u(y*(w) N O) > 0.
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Inwhatfollows, foranyw ¢ W,let Uv = p ¢ W [wRv (i.e., Uw is the
smallest opensetin W containing w).

Lemma 4.8.11. y is continuous.

Proof. Let Ube an opensetin Wand suppose thatx ¢ y®(U). Let y(x) = w U
. Then xis exceptional for some y;. So xbelongs to an (open) terminal cube T of
Vg1 with y1¢1(T) = w. By R-monotonicity of y/(y) forplly B, we know
thatforanyy ¢ T, (y) € Uv—ie, T c v®(Uw). Moreover,sincew  Uand
Uisopen,wehave Uy ¢ U.Thusx ¢ T  y#(U). This shows that y®(U)is
openinX. - O

Lemma 4.8.12. yis open.

Proof. Let O be open in B and let uz= y(O). We show that Uy y(O). We
know that there exists %O such that y(x) = w. Moreover, x is exceptional for
some ;. Pick E > 0 small enough so that the E-neighborhood of x is contained in

O. By Lemma 4.8.8, for each v c Uwthere is a terminal cube Ty of yjcontained in
the E-neighborhood of xsuch that y)(7v) = v. But then for any exceptional point

yvof yi+1 that lies in Ty, we have y(yv) = yi+1(yv) = v, and yv € O. We have
shown thatforall v € Uy, v € y(O). Itfollows that y( O) is open. O

Lemma 4.8.13. y is surjective.

Prpof. This follows immediately from the fact that y “hits” each of the roots,
wo,...,u/7 , of K and y is open. 0

Corollary 4.8.14. @ is refuted in M.

Proof. Westipulated that @isrefuted inthe dynamicKripkemodel K= {V,R, G, V1. j
Equivalently, letting M1 = Ak, hg, V1 bp the dynamic algebraic model corre-
sponding to K, ¢ is refuted in M1. By Lemma 4.8.11, Lemma 4.8.12, Lemma
4.8.13, and Lemma 4.8.10, we showed that y : X — Wis (i) continuous, open

and surjective; (ii) yo f= Go y; and (iii) yhas the M-property with respect to u.

Thus by Lemma 4.7.5, the map @ : hAk, hci — hMy thei defned by

o(S) = [y*(S)|
is a dynamic embedding. We now defne the valuation V2 : P — My by:
Va(p) = ® © Vi(p)
and we let M2 = hM g hF, W2i. By Corollary 4.7.3, Mz |= ¢. In view of the
U~
O

isomorphism My = M, we have shown that ¢ is refuted in M.
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We have shown that for any formula @/ S4C, @ is refuted 9. We conclude
thesectionby stating this completenessresultmore formally asfollows:

Theorem 4.8.15. DMLm & S4C.

4.9 Completeness for a single measure model

In this section we prove a strengthening of the completeness result of the previous
section, showing that there is a single dynamic measure mogg\y, h, V in which
everynon-theoremof S4 Cisrefuted.

Defnition 4.9.1. Denote by N the product M x M x M - - - This is a Boolean
algebra, where Boolean operations are defned component-wise:

(a1, a2, a3,...)Vv (b1, b2, b3,...)=(a1V bt, a2V b2, a3 VvV bz, ...)
(a1, az, a3, ... ) A (b1, b2, b3,...)=(a1 A bt,ag A b2, a3 A b3, ...)
¥Ha, @, a3,...) = (Qa1, 92,943, ...)

Defnition 4.9.2. We say (a1, a2, a3, . . . ) is an open element in M¥ if ay is open
in M for each k € N.

The collection of open elements in M“is closed under fnite meets, arbitrary
joins and contains the top and bottom element (since operations in M“are com-
ponentwise). We defne the operator Iy on M“by:

I(ai, a2, a3, ...) = (lay, Iap, Iaz, . . .)

Then lwis an interior operator orm\f (the proof is the same as the proof of Lemma
4.5.8). So the algebra Rfogether with the interior operator Iy is a topological
Boolean algebra.

Lemma 4.9.3. There is a dynamic algebraic model M = hM%, h, Vi such that
for any formula @ € Lp,q, the following are equivalent:

(i) SAC " @
(i) M= o.
Proof. Let g bg an enumeration of all non-theorems of S4C (there are only
countably many formulas, so only countably many non-theorems). By complete-

ness of S4C for M, for each k € N, there is a model My = hM, hy, Vii such that
My |= @k. We construct a model M = hM%, h, Vi, where hand V are defned
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as follows. For any haxiken = (a1, a2, a3,...) € MY, and for any propositional
variable p:

h((a1, a2, a2, . . .)) = hhu(ak)iken

V(p) = hVk(p)iken

(Thefactthat hisan O-operator follows from thefactthat his computed compo-
nentwise according to the hy’s, and each hkis an O-operator).

We can now prove the lemma. The direction (i) = (ii) follows from Propo-
sition 4.4.7. We show (ii) = (i), by proving the contrapositive. Suppose that
S4C |=@. Then @ = @k forsome k € N. Weclaim that

%V (@) = V(o)

where mx is the projection onto the kth coordinate. (Proof: By induction on com-
plexity of ¢, and the fact that mxis a topological homomorphism.) In particular,

iV (@k) = Videk) 6= 1.50 V(@x) = 1, and M [= ¢x. M
Lemma 4.9.4. M¥ is isomorphic to M.

Proof. Weneed to constructanisomorphism from M“ontoM. Let (a1, a2, as, .. .)
be an arbirary elementin \ “. Then for each k N, we can choose a set
Ak c [0, 1] such that ax = Axand 1 / Ax. We defne a sequence of points
skintherealinterval [0,1] asfoHows:

so=0
s1=1/2
s2=3/4

K
_ 20l . .
In general, sk = j—(7 k > 1). We now defne a sequence of intervals I x having
the ax'sasendpoints:

1
h=1[0,
0 [1%)
B[ -
1 [?,fr)
12=[;,§)

and in general I = [ sk, Sk+1). Our idea is to map each set Axinto the interval .
We do this by letting Bk = lx Ax+ sk where Iis the length of I. Clearly Bx S Ik
and BN Bj = 0 forallk & j. We can now defne the map h: M* — M by:
L
ha1,a2,a3,...)=| Bk |
keN
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where Byis defned as above. The reader can now verify that h is an isomorphism.
O

Corollary 4.9.5. There is a dynamic measure model M = hM, h, Vi such that for
any formula @ € Lp q, the following are equivalent:

(i) s4C " @;
() M= o.

Proof. Immediate from Lemma 4.9.3 and Lemma 4.9.4. O
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AppendixA

‘Connected’ and ‘Limited’ in
Gunky Space

In (1), Arntzenius takes as topological primitives the relation of being ‘connected’
and the property of being ‘limited.” (These frst appeared together in Roeper’s ax-
iomatization of what he called ‘“region-based topology.’ ) Intuitively, two regions
are connected if they overlap or atleast share a boundary point; aregion is limited if
it is bounded from the outside. Arntzenius defnes these relations in reduced mea-
sure algebras by giving defnitions for pointy topological spaces that are invariant
under differences of measure zero:

'"Roeper’s ten axioms for pointless topology are as follows:

(A)) Ifpointlessregion Aisconnected to pointlessregion B, then Bis connected to A.

(A;) Every pointless region thatis not the pointless Inull region’ is connected to itself.

(A3) Thenull region is not connected to any pointless region.

(Ay) If A is connected to B and Bis a part of C then A is connected to C.

(As) If A is connected to the “fusion’ of B and C, then A is connected to B or A is connected to C.
(Ag) The null region is limited.

(A7) If A is limited and B is a part of A then B is limited.

(Ag) If A and B are limited then the fusion of A and B is limited.

(Ay) If A is connected to B then there is a pointless limited region C such that C'is a part of B, and
A is connected to C.
(Ajo) If Aislimited, Bisnotthe pointless null region, and Aisnotconnected to the complement

of B, then there is a pointless region Cwhich is non-null and limited, such that A is not
connected to the complement of C, and Cis not connected to the complement of B.

Arntzenius shows that on his defnitions of ‘connectedness’ and ‘limited’ for elements of reduced
measure algebras, axioms (A1) - (A9) are satisfed, but (Aio) fails.
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Defnition A.1 (Arntzenius: Connected). Pointy Borel sets A and B are connected
if there exists a point p such that any open set containing p has an intersection of
non-zero measure with both A and B.

Defnition A.2 (Arntzenius: Limited). Pointy Borel set A is limited just in case for
some compact pointy set B we have measure A N B = measure (A).2

Inthisappendix, wesuggestaway of reproducing theserelationsinthemeasure-
theoreticsetting by introducing a topological basis for the collection of open ele-
ments in the algebra.

Recall the notion of a basis in pointy topology.

Defnition A.3. Let hX, T i be a topological space. A subset B of T is a basis if
every member of T is a union of members of B.

In the real line with its standard topology, for example, we could take as a basis
the collection of all open intervals, or the collection of all rational open intervals
(intervals with rational endpoints). Let us defne an analogous notion for reduced
measure algebras.

Defnition A.4. Let M be a reduced measure algebra, and let G be the corre-
sponding collection of open elements. A subset B of G is a basis if every member
of G is a join of members of B.

Intheremainderofthisappendix,let pg denoteareduced measurealgebraaris-
ing from n-dimensional Euclideanspace together withstandard Lebesgue measure.
Weselect as our basis the collection of elements represented by n-dimensional
opencubes, orthecollectionof elementsrepresented by n-dimensional openspheres
(alternatively, rational cubes and rational spheres).

We now defne the relations of connectedness and limitedness by reference to
this basis.

Defnition A.5. Let a and b be elements of M. Then a and b are connected if there
exists a set {cn | n € N} of non-zero basic open elements in M such that

lim measure (cn) = 0

n— oo

Cn > Cn+1

and
enAha=0,ecnAb6=0

for all n € N.

*Infact, Arntzenius givesa different butequivalent formulation: Aislimitedif there isacompact
pointy set Bsuch thatmeasure(ANcomplement(B)) = 0.
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Defnition A.6. Let a be an element of the Lebesgue measure algebra, M. Then a
is limited if there exists a basic open element of the algebra, ¢, such that a < c.

The following two propositions show that Defnitions A.1 and A.2 are equiva-
lent to Defnitions A.5 and A.6, respectively.

Proposition A.7. Two elements a and b of\gre connected according to Defnition
A.1 if and only if they are connected according to Defnition A.5.

Proof. Let A and B be Borel subsets of the real line, and let a and b be the
corresponding elements of\gIf a and b are connected according to Defnition
A1, then there is a point, p, such that any open set containing p has an inter-
section of non-zero measure with A and with B. Let Cnbe the open interval
centered at p with length (21—)”, and let ¢y be the corresponding element of M
(n N). Then cnis a descending chain of non-zero basic open elements such that
limp, _measure (cn)  0.Moreover, measure(cn a),= measure(Cn A)=

0.3 This shows that if two elements of the algebra are connected according to Def-
inition A.1, then they are also connected according to Defnition A.5.

For the converse, suppose that a and b are connected according to Defnition
A.5. Then there is a descending sequence, hcni, of non-zero basic open elements in
M with measure tending to zero, such that cnintersects both aand bfor all n

e N.Let Chbearepresentative openintervalof cn. Then Chhasleftandright
endpoints, which we denote by Ln and Ry, respectively. Note thgt §nand, Ry
are bounded, monotone sequences of real numbers, hence converge. Moreover,
sincethemeasure of chtendsto zero, these sequencesconverge to the same point,
whichwe denote by p. Thereader cannow convince herself thatany openset of
reals containing phas an intersection of non-zero measure with both Aand B. This
shows that if two elements of the algebra are connected according to Defnition
A5, then they are also connected according to Defnition A.1. O

Proposition A.8. An element aof g is limited according to Defnition A.2 if and
only if they it is limited according to Defnition A.6.

Proof. Suppose that a is an element of pgpd that A is a representative of a
satisfying Defnition A.2. Then there is a compact set B such that measure (An
B) = measure (A). Since these sets live in n-dimensional Euclidean space (i.e.,
R"), Bis closed and bounded. This means that there is a closed interval, C, such

*Here we use ‘measure’ both for the Lebes guemeasure on therealline, and for the measure
function on the Lebesgue measure algebra. Strictly speaking, these functions have different domains,
andsoshouldbe denoted differently. Wetrustthe sloppinesshere willnotlead toany obscurity.

120



that B — C. Let band cbetheelementsof N corresponding to pointy sets Band
C, respectively. Then cis a basic open element, and we have:

measure (a) = measure (a A b) < measure (a A ¢) < measure (a)

It follows that a < c. This shows that if an element of the algebra is limited
according to Defnition A.2, then it is also limited according to Defnition A.6.

For the converse, suppose that a is limited according to Defnition A.6, and
that A is a representative of a. Then there is a basic open element, b, such that
a b. Let Bbe an open interval representative of b. The closure of B, CI(B), isa
compact pointy set. Moreover, measure (4, B) = measure (A). This shows that
if an element of the algebra is limited according to Defnition A.6, then it is also

limited according to Defnition A.2. O

121



	Acknowledgements
	3 Completeness of S4 for the Lebesgue Measure Algebra 62
	4 Probabilistic Semantics for Dynamic Topological Logic 88
	Appendices 125
	A   ‘Connected’ and ‘Limited’ in Gunky Space 126
	1.1 Introduction
	1.2 Modal  beginnings
	1.2.1 Early motivations
	1.2.2 Relational semantics for modal languages

	1.3 Kripke semantics
	1.4 Space and topological semantics
	1.4.1 A mathematical view of space
	1.4.2 Topological semantics

	1.5 Measure and probabilistic semantics
	1.5.1 Measure
	1.5.2 Probabilistic semantics

	1.6 Gunk via the Lebesgue measure algebra
	1.6.1 Motivations
	1.6.2 The approach based on regular closed sets
	1.6.3 The measure-theoretic approach

	1.7 Game plan
	2.1 Introduction
	2.2 Kripke semantics for S4
	2.2.1 Language, models, and truth
	2.2.2 Kripke’s classic completeness results

	2.3 Infnite binary tree
	2.3.1 The modal view of the infnite binary tree, T2
	2.3.2 Building a pŁmorphism from T2 onto fnite Kripke frames

	2.4 Topological semantics for S4
	2.4.1 Topological semantics
	2.4.2 Interior maps and truth preservation in the topological seman- tics
	Wilson tree (complete binary tree), T+



