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Abstract 

Probabilistic Semantics for Modal Logic 

by 

Tamar Ariela Lando 

Doctor of Philosophy in Philosophy 

University of California, Berkeley 

Professor Paolo Mancosu & Professor Barry Stroud, Co-Chairs 

We develop a probabilistic semantics for modal logic, which was introduced 
in recent years by Dana Scott. This semantics is intimately related to an older, 
topological semantics for modal logic developed by Tarski in the 1940’s. Instead 
of interpreting modal languages in topological spaces, as Tarski did, we interpret 
them in the Lebesgue measure algebra, or algebra of measurable subsets of the real 
interval, [0, 1], modulo sets of measure zero. In the probabilistic semantics, each 
formula is assigned to some element of the algebra, and acquires a corresponding 
probability (or measure) value. A formula is satisfed in a model over the algebra 
if it is assigned to the top element in the algebra—or, equivalently, has probability 
1. 

The dissertation focuses on questions of completeness. We show that the propo-
sitional modal logic, S4, is sound and complete for the probabilistic semantics 
(formally, S4 is sound and complete for the Lebesgue measure algebra). We then 
show that we can extend this semantics to more complex, multi-modal languages. 
In particular, we prove that the dynamic topological logic, S4C, is sound and com-
plete for the probabilistic semantics (formally, S4C is sound and complete for the 
Lebesgue measure algebra with O-operators). The connection with Tarski’s topo-
logical semantics is developed throughout the text, and the frst substantive chapter 
is devoted to a new and simplifed proof of Tarski’s completeness result via well-
known fractal curves. 

This work may be applied in the many formal areas of philosophy that exploit 
probability theory for philosophical purposes. One interesting application in meta-
physics, or mereology, is developed in the introductory chapter. We argue, against 
orthodoxy, that on a ‘gunky’ conception of space—a conception of space accord-
ing to which each region of space has a proper subregion—we can still introduce 
manyoftheusualtopologicalnotionsthatwehaveforordinary,‘pointy’space. 
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Chapter 1 

Introduction 

1.1 Introduction 

Almost half a century has now gone by since S. Kripke introduced Kripke seman-
tics for modal logic. This semantics crystalized ideas in the analysis of modal 
propositions that can in some sense be traced back to Leibnitz, and his conception 
of ‘necessity’ as that which holds not just in the actual world, but in all possi-
ble worlds. Today Kripke semantics is standard not just in philosophical circles, 
but in such related disciplines as linguistics, computer science, and mathematics. 
No other semantics for modal languages rivals the simplicity and fexibility of the 
Kripke framework. 

But long before Kripke, there was Tarski. 
Lookingattheaxiomsforthemodal logic,S4, Tarskirealizedthat, rearrangeda 
certain way, these axiomsresembled theaxioms used by mathematicians to de-

scribe a topological space.1 If you are unfamiliar with topology, don’t worry. 
Think of a topological space (or simply a space) as a collection of points glued 
togetherinsomeway.Themostfamiliarspaceis,perhaps, three-dimensionalEu-
clidean space. Here we think of individual points as triples of real numbers. This 
space has some special features: between every twopoints, there is awell-defned 

distance; a sequence of points that converges, converges to a single point; and so 
on. What Tarski showed is that modal logic can be interpreted in topological 

spaces, and that—in a sense to be further specifed below—the modal logic S4 is 
the logic of topological spaces. Here, rather thanthinkingof the ‘necessity’ or ‘D’-
modality as picking out some collection ofpossible worlds, Tarski thought of it as 

1Recall that a topological space is a pair, X, , where X is a set, and is a collection of 
subsets of X that is closed under fnite intersections, arbitrary unions, and contains the entire set X h T i 
and the empty set, ∅. T 
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a spatial operator, which picks out the interior of a region of topological space. 
TarskiandMcKinsey’sworkinthe1930’sand1940’s led towhatisnowcalled 

the topological semantics for modal logic. Their elegant completeness results pre-
date Kripke semantics by more than a decade, but in the years after the introduc-
tion of the Kripke framework, the topological semantics was largely forgotten. The 
fexibility of the Kripke framework—the fact that it can be used to model not just 
S4, but many different propositional and predicate modal logics—as well as its 
intuitive appeal are perhaps jointly responsible for the near-oblivion into which 
the topological semantics fell. In the last ffteen years or so, however, things have 
changed. Modal logicians, familiar with the many advances in temporal logics 
(or modal logics used to describe time, and temporal processes) started asking, 
‘What about a modal logic of space?’ Tarski’s work on the topological semantics 
came to be seen as the foundation stone of a much broader project: using modal 
logic to describe, make distinctions between, and systematize our reasoning about 
space and spatial structures. This research program has produced many new and 
interesting results in recent years: logicians have simplifed and refned Tarski and 
McKinsey’s original completeness results; extended Tarski’s topological semantics 
to more complex, multi-modal languages; and proved new results concerning the 
model theory and complexity of these extensions. 

In the pages that follow, we take Tarski’stopological semanticsasour starting 
point. This is not to say that we ignore Kripke’s relational semantics—far from it. 

Interesting relationships between the two will be developed throughout the text. But 
the primary aim of this work is not, in fact, to develop either Tarski’s topolog- ical 

semantics, or Kripke semantics. Rather, it is to introduce the reader to a newwayof 
interpreting modal languages—one that can be developed quite naturally, as we’ll see, 
from Tarski’s topological semantics, but which differs in important ways from any of 

thewell-knownsemanticsformodal logics todate.2 Those semanticsallsharethe 
following feature. In a given modal model (or formal interpretation ofthe modal 

language), each formula is either true or false. In Kripke semantics, we say that a 
formula is true in amodel if it’s true at every (accessible) possible worldin themodel. 

In the topological semantics, we say that a formula is true in a model if it’s true at 
every point in the relevant topological space. What if instead we inter- preted modal 
languages probabilistically? What if, in other words, each formula in a given model 

gotassignednotjusta truthvalue,butaprobabilityvaluebetween0and1? The 
idea for a probabilistic semantics was introduced by Dana Scott in the last several 

years, in talks given at Stanford and Berkeley. As Scott said, the semantics 
“provides rich ingredients for building many kinds of structureshaving 

2For a probabilistic semantics for classical logic, see K. Popper’s (31) and H. Field’s (12). See 

also Keisler’s (16) and(17). 

2 



  

 
 
 
 

    
        

    
            

  
 

             
              

  
               

   
 

            
            

  
             

               
              

  
              

            
             

               
             

            
            

             
            

      
            

   

    
  

             
       

              
              

           

non-standard random elements.” At the time, however, many fundamental ques-
tions about the semantics—particularly those relating to completeness—were still 
unanswered. In the chapters that follow, we answer some of these questions, and 
show that the probabilistic semantics can be elegantly extended to more complex, 
multi-modal languages. 

In embarking on the work that follows, the question naturally arises: Why defne a 
new semantics for modal logic in the frst place? Isn’t the standardKripke seman-
tics good enough? 

There are two ways to respond. On the one hand, we may start out from an 
interest in existing modal languages (or existing axiomatic modal systems), and 
be interested in what the different semantics for these languages are. Here, of 
course, the probabilistic semantics will have quite different features from the stan-
dard Kripke semantics and even from the topological semantics for S4. Formulas, 
as we noted, acquire not just truth values in probabilistic models, but probability 
values. Someone interested in the various uses to which probability theory has been 
put in the more formal areas of philosophy might take interest in this new seman-
tics for this reason. But secondly, one might start out from an interest in certain 
mathematical objects themselves—topological spaces, say, or topological spaces 
together with Borel measures in the present case. Then one will want to know: to 
what extent can modal languages describe, make distinctions between, and help us 
reason about these structures? From this point of view, the fexibility of Kripke 
semantics—the fact that it can be used to interpret not just S4, but many different 
modal logics—is not essential. What we want to know is what modal logics the 
mathematical objects we’re interested in give rise to, and what distinctions between 
such objects can be made within the confnes of differentmodal languages.3 

As the reader moves forward through the work of the next chapters, she is 
invited to keep these two perspectives in mind. The new semantics presented here 
is not meant as a rival for Kripke (or relational) semantics. Rather, the hope is 
thattheprobabilisticsemanticscantakeitsplacealongsidethoseothersemantics, 

3J. Van Benthem makes this point in connection with Tarski’s topological semantics: 

Some modal logicians see topological models as a means of providing new semantics for 
existing modal languages, mostly for logic-internal purposes. This can be motivated a bit more 
profoundly by thinking of topologies as models for information, making this interest close to 
central logical concerns. But someone primarily interested in Space as such will not worry 
about the semantics of modal languages. She will rather be interested in spatial structures by 
themselves,andspatiallogicswillbejudgedbyhowwelltheyanalyzeoldstructures,discover 
new ones, and help in reasoning about them. (40, p. 11) 

3 



  

   

 
 
 
 

           
     

 
    

 

 
          

                  
                   

    
                

    
    

  
 

                 
               
               

      
 

          
       

   
     

    
 

 
   

   
  

 
  

  
  

   

                
  

 

openingupsomenewavenues,bothphilosophicallyandmathematically. Whynot 
let a thousandfowersbloom? 

1.2 Modal beginnings 
4 

But frst: what exactly is modal logic? 
The standard propositional modal language consists of some countable collec-

tion of propositional variables, {Pn | n = 1,2,3,...}, the Boolean connectives, 
, , , , , andthe two modalsymbols, D and 3. The symbols D and 3are {¬ ∨  → ↔} 

typically interpreted as expressing ‘It is necessary that . . . ’ and ‘It is possible that 
. . . ,’ respectively. More generally, modal symbols may be used to express a host 
of modalities from natural language—including, as we’ll see, temporal, deontic, 
epistemic and, of course, metaphysical modalities. What exactly is a modality? R. 
Goldblatt says, 

A modality is any word or phrase that can be applied to a given statement S to 
create a new statement that makes an assertion about the mode of truth of S: 
about when, where or how S is true, or about the circumstances under which S 
may be true. (13, p. 310) 

GoldblattgivesasexamplestheEnglishlanguageexpressions,“henceforth,”“even-
tually,”“hitherto,”“previously,”“itisobligatory/forbidden/permitted/unlawfulthat,” 
“it is known to X that,” “it is common knowledge that,” “it is believed that,” and so 
on. Modal logics, we can say, are logics expressed in modal languages. They have 
been used to get at the meaning of, and formalize many of these English-language 
modalities. 

1.2.1 Early motivations 

The modern history of modal logic begins perhaps with C.I. Lewis. Lewis was 
motivated by the idea of understanding the English-language “implies”—a condi-

tional connective that he took to have quite different properties from the material 
conditional of classical logic. “Expositors of the algebra of logic,” Lewis noted, 

“have not always taken pains to indicate that there is a difference between the al-
gebraic and ordinary meanings of implication.” Lewis was particularly disturbed by 

what have come to be known as the paradoxes of the material conditional: the 
4My account of the history here follows Goldblatt in (13). See his excellent discussion for much 

more detail. 

4 



  

 
 
 
 

              
     

 

  
  

   
  

            
           

  
             

               
            

   
             
            

             
  

            
   

             
             

   
              
         

   
             

   
 

             
      

             
    

           

     

                 
             

 

 

 

fact that in classical logic a false proposition implies (in the algebraic sense) any 
proposition, and a true proposition is implied by any proposition. Insymbols, 

¬P → (P → Q); 

P  → (Q → P ) 
Under the ordinary meaning of implication, Lewis thought that ‘P implies   Q’ 
means something like, ‘Q can be legitimately inferred from P.’ But one cannot 
legitimately infer any proposition from a false proposition. The paradoxes of the 
material conditional highlighted the way in which the material conditional of clas-
sical logic failed to capture the ordinary meaning of “implies”—a connective which 
Lewis thought stood at the foundations of fundamental notions in logic. “Unless 
‘implies’ has some ‘proper’ meaning, there is no criterion of validity, no possibil-
ity even of arguing the question whether there is one or not,” Lewis claimed. “And 
yet the question, What is the ‘proper’ meaning of ‘implies’? remains peculiarly 
diffcult.” (24, p. 325) 

What system of logic, if not the classical one, could formalize the ordinary 
meaning of “implies”? The proposition expressed by ‘A implies B’ was, accord-
ing to Lewis, equivalent to the proposition expressed by ‘Either not-A or B.’ But 
Lewis distinguished between what he called an extensional and intensional read-
ing of “or.” On the extensional reading, “or” is the truth-functional disjunction 
of classical logic. This yields the algebraic meaning of “implies” as a material 
conditional. But on the intensional reading of “or,” Lewis claimed that “at least 
one of the disjuncts is necessarily true.” Using this intensional reading to under-
stand the ordinary meaning of implies, ‘A implies B’ is equivalent to ‘Necessarily 
not-A or B.” To understand the ordinary “implies,” Lewis was moved to appeal to 
modal vocabulary—vocabulary that he thought functioned differently from any of 
the truth-functional connectives of classical logic. 

Lewis came at modal logics from a syntactic, or axiomatic, point of view. His 
aim was to identify axioms and rules of inference in a new, modally-enriched 
language—ones that would be appropriate to what he took to be ordinary impli-
cation. In an appendix to their 1932 volume, SymbolicLogic, Lewis and Langford 
defned fve different axiomatic modal systems, S1 - S5.  In these systems ‘3’ 
is taken as a modal primitive, with the intended interpretation “possibly” or “it 
is possible that.” The strict conditional—which was meant to formalize ordinary 
implication—isthendefnedintermsofthismodalprimitiveasfollows: 

P ⇒ Q ≡ ¬ 3 (P & ¬Q) 

In words: ‘P implies Q’ is equivalent to ‘It is not possible that P and not-Q.’ (Al-
though Lewis did not himself introduce a separate “necessity” operator, D, it can 

5 



  

 

   

 
 
 
 

       
               

         
 

      

             
           
                

    
    

   
            

            
            

  
                    

                    
              
       

             
 

            
          

           
               

  
          

             
    

             
 

    
 

             
                

               
               

 

 be defned in terms of 3 and  in the usual way: D≡φ 3 φ. In words: ‘Nec-¬   ¬ ¬ 
essarily P’ is equivalent to ‘It is not possible that not-P.’) The systems, S1 - S5, 
were the frst modern axiomatic systems of modal logic. 

1.2.2 Relational semantics formodal languages 

Already at the beginning, there was a range of views about what modalities the 
symbols ‘D’ and ‘3’ naturally expressed. While Lewis took them to symbolize 
necessity and possibility, respectively, Gö del saw in the new language a way of 
talking about provability within a formal system. He interpreted ‘D’ as the senten-
tial operator ‘It is provable that...,’ and argued that on this interpretation, S4 was 
the correct axiomatic system. McKinsey and Tarski, meanwhile, noticed the deep 
connection between Lewis’s axioms for S4 and Kuratowski’s axioms for a topo-
logical interior operator. They interpreted ‘D’ spatially, as picking out the interior 
of a region of topological space (more on this below). Finally, Prior interpreted 
modal languages temporally, and took ‘D’ and ‘3’ to symbolize the temporal sen-
tential operators, ‘Henceforth . . . ’ and ‘At some point in the future . . . ’ (or ‘Until 
now . . . ’ and ‘Atsome point in the past . . . ’). These differing viewpoints struck, in 
some sense, at the heart of the modal logic program: What was modal logic about? 
Whatmodalitiesdiditseektoformalize? 

Although Lewis did not concern himself with the problem of giving a for-
mal semantics for modal languages, interest in the subject was quickly growing. 
Broadly speaking, there were two competing traditions that developed more or less 
simultaneously: the algebraic tradition, in which modal languages are interpreted 
in Boolean algebras with operators, and the relational tradition, which culminated 
in Kripke’s possible world semantics. We focus in this section on the latter, in view 
of it’s present-day prominence. 

An early precursor to Kripke’s possible worlds semantics was proposed by 
Carnap.5 According to Carnap, “necessity” was to be interpreted as logical truth, or 
analyticity (truth in virtue of meaning alone). Infuenced by Leibnitz’s analysis of 
necessity as that which holds in all possible worlds, Carnap introduced the notion 
of a state description. A state description for a propositional language, L, is a 
collection of sentences in which for every propositional variable P in L, either 
P or P ¬ is in the collection, but not both—and nothing else is in the collection. 
Each state description is a total specifcation of truth for the propositional variables 
in L. We can think of a state description as picking out some possible world, or 
possible state of affairs, as described by the language L. The collection of all state 
descriptions for L is, then, the collection of all possible worlds or states of affair 

5See (8) and (9). 
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visible from the point of view of the language, L. In Carnap’s semantics, P holds in 
a given state description if P is a member of the state description; ‘φ ∨ ψ’ holds 
ifeither‘φ’holdsor‘ψ’holds; ‘ φ’holdsif ‘φ’doesnothold. Carnap’sideawasto ¬ 

analyze necessity, or logical truth, as truth across all state descriptions. Thus, the 
67 A formula ‘ Dφ’ holds in a state description if ‘φ’ holds in every state description. 

number of problems attended Carnap’s semantics, some of which Carnaphimself 
recognized. One simple oneconcerns thefailure ofstandard lawsofsub-stitution. 

In particular, since there is always a state description in which P is true, the formula 
3P (or D P) is true in every state description. Nevertheless, the ¬ ¬ 

formula 3(P & P ) is not true in any state description. Taking validity to be ¬ 
truth across all state descriptions, we cannot substitute ‘P& P’ for ‘P’ while ¬ 
preserving validity. This violates Lewis’s rule of Uniform Substitution, accord-
ing to which one can substitute arbitrary propositions (sentences) for propositional 

variables (sentence letters) in valid formulas.89(Other problems concern the failure of 
completeness for quantifed S5, but we do not go into this here. For a brief 

discussion, see (4). For a fuller discussion, see (25).) 
In the late 1950’s, Kripke came up with an idea for a formal semantics for 

modal logic that effectively did away with this problem. (Kripke was not respond-
ing to Carnap—he arrived at this early work independently, while still in high 
school!) His idea was to interpret propositional modal logic in partial truth ta-
bles—or truth tables, in which some of the rows are deleted. Each row of the truth 

6Although Carnap’s semantics was developed for frst-order modal languages with the modal 
operators, ‘D’ and ‘3,’ we present only the simpler propositional case. 
7More formally, in Carnap’s semantics, we get the following recursive defnition of satisfaction. 
Let M be a state description, and φ a formula in a propositional modal language, L. Then: 

1. M |= P iff P ∈ M (for any propositional variable, P). 
2. M |=¬φ iff it’s not the case that M |= φ. 
3. M |= φ ∨ ψ iff either M |= φ or M |= ψ. 
4. M |=Dφ iff M0|=φ foreverystatedescriptionM0 in the language L . 

The important clause is the modal one. ‘Necessarily φ’ holds in a state description, M , just in case 
‘φ’ holds in every state description. One important consequence of this defnition of satisfaction 
is that if the sentence ‘Necessarily φ’ is true in one state description, then it is true in every state 
description. Necessity is not world-relative, as we might say.

8The SEP entry, “Modern Origins of Modal Logic,” points out that Carnap nevertheless proved 
completeness of propositional S5 for his semantics, but that the proof employs Quine’s schematic 
notion of validity, according to which “a logical truth... is defnable as a sentence from which we get 
only truthswhen wesubstitute sentencesfor its simple sentences.” (32,p. 50)

9Somewhat more generally, the problem with Carnap’s semantics was that if the sentence ‘Nec-
essarily φ’ is true in onestate description (or possible world), then it is true in everystate description. 
As a consequence, we cannot have two models of the modal language, on this semantics, in which 
‘Necessarily φ’ is true in one but not the other. 
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table for a given sentence, ‘φ,’ is an assignment of truth values to the propositional 
variables occurring in ‘φ’. Again, we can think of these rows as possible worlds 
in some attenuated sense. In Kripke’s early conception, a model for a formula ‘φ’ 
in the standard propositional modal language is a pair h G, K i , where K is some 
collection of truth assignments for the propositional variables occurring in ‘φ,’ and 
G is a member of K. (Thus, a model is a partial truth table in which one row is 
highlighted.) Each truth assignment in K assigns a truth value to every subformula 
occurring in ‘φ’ according to the usual recursive clauses for Boolean connectives, 
as well as the following rule for the ‘D’-modality: 

Dψ is true just in case ψ is true in every member of K 

Thus, to say that ‘φ’ is true in a model is to say that ‘φ’ is true throughout all truth 
assignments in that model. In this semantics, we say that a formula is valid if it is 
true in every such model. 

Notice that under these rules, neither ‘3P ’ nor ‘3(P P )’ is valid! Indeed, ∨¬ 
if we select only rows of the truth table where ‘P ’ is false, then in this model, 
‘3P      D  P ’ is false. So ‘3P ’ is not valid. More generally, depending on K— ≡ ¬ ¬ 
orourselectionofrowsofthetruthtable—‘3P ’ is trueinsomemodelsandfalse in 
others(andthesamefor‘DP ,’orboxedformulasgenerally). Theabilitytorestrict 
the collection of possible worlds, K, that matter for the truth of modal formulas 
is what allows us to do away with the problems faced by Carnap. Kripke showed 
that the partial truth table semantics is sound and complete for Lewis’s S5—the 
strongestoftheaxiomaticsystemsintroducedinLewisandLangford(1932). 

But what about weaker propositional logics? Consider, for example, the for-
mula ‘P  →D3P .’ This formula is not a theorem of S4, and so should not come 
out valid in any (complete) semantics for that logic. But the formula is satisfed in 
every partial truth table. Indeed, if there is some row of the truth table in which P 
is true, then 3P is true in every row, and so D3P is true in every row as well. If, 
on the other hand, there is no row where P is true, then the formula comes out true 
in every row in virtue of the fact that the antecedent is false. The simple partial 
truth tables semantics, while suitable for S5 (where this formula is a theorem), did 
not suggest a semantics for the full range of propositional modal logics. In order to 
give a proper semantics for these systems, a full-blown relational structure had to 
be developed. (Notice that such structure was implicit—in hindsight—in the sim-
ple partial truth tables. If we think of each rowin a truth table asa possible world, 
then a partial truth table consists of some collection of possible worlds, each of 
which is related to every other.) Such structures had been considered in some form 
byHintikka,Kanger,andPriorbutitwasn’tuntilKripke’sworkintheearly1960’s 
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w0 

w1 w2 

w3 

Figure 1: A Kripke frame, F = hw0, W, Ri, where W = {w0, w1, w2, w3} and 
R = {hw0, w1i, hw0, w2i, hw2, w3i}. 

that a fully fexible and workable version was articulated.10 

1.3 Kripke semantics 

By now, several of the ideas that appear in the mature version of Kripke semantics 
[Kripke, 1963] are familiar. The semantics interprets modal formulas in relational 
structures (or frames), which consist of some set of possible worlds, together with 
a binary ‘accessibility’ relation on worlds. Pictorially, we can think of a Kripke 
frame as a graph consisting of some collection of nodes together with arrows point-
ing from some nodes to others. (See Figure 1.) To say that ‘Dφ’ is true at a par-
ticular world, w, is to say that ‘φ’ is true throughout the worlds that are accessible 
from w. More informally: It is to say that from the point of view of w, φ is true as 
far as the eye can see. (Similarly, to say that ‘3φ’ is true at w is to say that ‘φ’ is 
trueatsomepossibleworldaccessiblefromw.) 

Formally, a Kripke frame is a triple F = wh 0, W, R i , where W is a set of 
possibleworlds, w0isa member of W (the actualworld), and R is a binaryrelation 
on worlds. A Kripke model is a pair F,V , where F is a frame, and V : W P h i × → 

,  is a valuation function, assigning to each world and propositional variable {> ⊥}
a truth value (the truth value of that proposition in the given world). We extend the 
valuation function to the set of all formulas in the language in the way one would 
expect. In words, ‘φ ∨ ψ’ is true at a world w just in case ‘φ’ is true at w or ‘ψ’ is 
true at w; ‘φ ∧ ψ’ is true at w just in case ‘φ’ is true at w and ‘ψ’ is true at w; and 
‘¬φ’ is true at w just in case φ is not true at w. But what about the modal symbol, 
‘D’? The formula ‘Dφ’ is true at w just in case ‘φ’ is true at each world w0 such 

10For a very thorough account of this history, see (13). 
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that wRw0 . More colloquially, ‘Dφ’ is true at a world w if ‘φ’ is true at all worlds 
accessible from w. Note that it is the binary accessibility relation that allows us to 
interpret modalities in Kripke semantics.’11 

Here we see for the frst time the full-fedged relational framework. Instead of 
each possible world being related to (or accessible from) every other, we have, as 
Kripke puts it, a notion of one world being possible relative to another. 

We read “H1RH2” as H2 is “possible relative to H1,” “possible in H1” or “re-
lated to H1”; that is to say, every proposition true in H2 is to be possible in H1. 
Thus the “absolute” notion of possible world in [1959a] (where every world 
was possible relative to every other) gives way to relative notion, of one world 
being possible relative to another . . . In accordance with this modifed view of 
“possible worlds” we evaluate a formula A as necessary in a world H1 if it is 
true in every world possible relative to H1. . . . Dually, A is possible in H1 iff 
there exists H2, possible relative to H1, in which A is true. (20, p. 70) quoted 
in (13) 

The relational structure in Kripke semantics gives us great fexibility. To see, 
for example, how in this semantics we can refute the formula ‘→P D3P ,’ con-
sider a model consisting of two worlds, w1and w2, where w1points to w2, and P 
is true at w1butnot w2. (SeeFigure 2.) Here w2does notpointtoanyworldwhere 
‘P 0 is true, so ‘3P ’ is false at w2. Since w1 points to w2, ‘D3P ’ is false at w1. It 
is the relational framework—in particular, the fact that not every world is related 
to every other—that allows us to fnd a refuting model for this formula in Kripke 
semantics. 12 

11More formally, we extend the valuation function, V , according to the following recursive 
clauses: 

1. V (w, φ ∨ ψ) = > iff V (w, φ) = > or V (w, ψ) = >; 
2. V (w, ¬φ) = > iff V (w, φ) = ⊥; 
3. V (w, Dφ) = > iff V (w0 , φ) = > for each w 0 ∈ W such that wRw0 . 

A slightly more complex version o f the semantics for predicate modal languages was presented in 
(20),but inkeeping withthe focushere onpropositional modal logics,we skip overthismaterial.

12As is well-known, simple conditions on the accessibility relation correspond to various special 
axiomsof Lewis and Langford’s axiomaticsystems. Forexample, if we require that the accessibility 
relation on worlds is refexive (i.e., every world points to itself), we validate the axiom of the system, 
T : ‘P 3→P .’ Why? If P is true at a given world, w, then since R is refexive, w points to itself. So 
w points to some world where P is true. This means that the formula ‘→P 3P ’ is satisfedinevery 
model defned over a refexive Kripke frame. Moreover, if a frame is non-refexive, then the formula 
canberefutedinthatframe. Consideraworld,w1,whichdoesnotpointtoitself. LetP betrueat 
w1 and false everywhere else. (See Figure 3.) Here P is false at every world to which w1 points. So 
3P is false at w1, and we have refuted ‘P → 3P .’ The example shows that Axiom T corresponds 
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P ¬P 

w1 w2 

Figure 2: A refuting model in Kripke semantics for the formula ‘P → D3P.’ 

w3 
. . . w3 

¬P ¬P 

w2 w1 w4 

¬P P ¬P 

Figure 3: A refuting model for the formula ‘P →3P ’ in an arbitrary, non-
refexive Kripke frame. The Kripke frame is non-refexive at the world w1, which 
is where we falsify ‘P → 3P .’ 

1.4 Space and topological semantics 

Relational structures provide a natural setting for interpreting modal languages, but 
let us now shift gears. Wesaid above that some two decades before Kripke intro-
duced Kripke frames, Tarski noticed a surprising connection between the axioms 
of Lewis’s S4, and the axioms used to describe topological space. His work led to 
what is now called the topological semantics for modal logic. Here modalities are 
interpreted not via a binary accessibility relation between worlds, but via the topo-
logical structure of space. To understand the semantics, we need to say something 
about what a topology, or topological space is. 

1.4.1 A mathematical view of space 

In our ordinary lives, we have a number of well-entrenched views about space and 
spatial properties. Any two distinct points bear a precise distance relation to one 
another. A sequence of points that converges, converges to a single point. No two 
points are infnitely far away. And so on. From a mathematical point of view, these 
features of space are not universal. When we think about space mathematically, we 
think in more general terms: there are many different kinds of space, with different 
spatial properties. For example, not all spaces come with a notion of ‘distance.’ 

to the class of refexive Kripke frames. Similar arguments show that other axioms correspond to the 
classof transitiveframes,symmetric frames,andframesinwhichR isanequivalencerelation. 
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In some spaces, it is impossible to say that one point stands three units away from 
another. Indeed, spaces that do allow for a notion of distance are rather special: 
we call them metric spaces, or spaces that have a metric (read: distance) function 
defned on them. What, then, is space in the fully general, mathematical sense that 
we are after? 

A space, as we think of it here, is just a collection of points that are glued 
together in a certain way. 

There are two ways to understand this. The frst involves the notion ofa neigh-
borhood, or as mathematicians say, open set.13 Think of the city of London. That 
city is made up of a very large number of different points on the earth that lie inside 
of its municipal boundaries. These points lie at various distances from one another: 
the Big Ben is (let us suppose) one mile from the Tate Modern, which is itself an-
other half mile from the London Eye. But quite apart from specifc distances, there 
are also neighborhoods in London: Hampstead, Notting Hill, Chelsea, and so on. 
Some of these neighborhoods overlap; others are disjoint. Imagine throwing out 
all information about the relative distances between individual points in the city. 
London, as you view it now, is a collection of points linked together by a system 
of neighborhoods. The information about neighborhoods furnishes some sense of 
how points in this space are related to one another spatially. When we speak of 
space mathematically, in a completely general way, we view it in this way: as a 
collectionofpointstogetherwithasystemofneighborhoods,oropensets. 

These open sets, or neighborhoods, must satisfy certain conditions if they are 
to defne a topology on the underlying set of points. In words these conditions state 
that the entire space and the empty set are open; the intersection of any two open 
sets is open; and fnally, the union of any collection of open sets is open. More 
formally, a topological space isa pair, hX,Ti,where X isa set (of ‘points’), and 
T is a collection of subsets of X that satisfes the following conditions: 

1. X ∈ T , ∅ ∈ T ; 

2. If S1,S2 ∈ T , then S1 ∩ S2 ∈ T ; 

3. If {Si | i ∈ I} ⊆ T , then 
S 

i∈ISi ∈ T . 

We call the sets in T open. Any collection of subsets of X that satisfes these con-
ditions defnes a topology on X. Again, space according to this defnition consists 
ofa collectionof points togetherwith a system ofopen sets, orneighborhoods. 

A second, less familiar way to think about space is as a set of points together 
withaninterioroperator. Thisoperatoridentifes,foranysubsetofpoints,whatthe 

13Althoughit is standardtouse theexpression ‘neighborhoodof x’ tomeanany setcontaining an 
opensetcontainingx,weusetheterm‘neighborhood’tomean,simply,openset. 
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interior of that subset is. Think of the interior of a region as the region minus any 
boundary points. For example, if we start out with a potato-shaped region of three-
dimensional Euclidean space, the skin of the potato is the boundary, and the interior 
is the white, feshy stuff inside. Or, starting with a disc in two-dimensional space, 
the circumference of the disc is the boundary, and everything else is the interior. 
There may be regions of space that have no interior. For example, the region of 
the real plane consisting of a point at (0,0), another point at (1,0), another point at 
(2,0), and so on. This region is all boundary. Or, there may be regions of space 
that have no boundary. Consider, for example, the open disc in two-dimensional 
space—the disc without any of the points along its circumference. This region is all 
interior. Information about the interior of each region of space again gives us some 
conception of how points in the space ft together spatially. On this way of viewing 
things, we think of space as a collection of points, together with information about 
what the interior of each region, or subset of points, is. 

Again, the interior operator must satisfy certain conditions in order to count 
as an interior. In words these conditions state that the interior of any region is a 
subset of that region; the interior of the whole space is the space itself; the interior 
of the intersection of two regions is the intersection of their interiors; and fnally, 
the interior of the interior of a region is just the interior of that region. (Iterating 
interiors gives us nothing new.) More formally, let X be a set of points, and let A 
and B be arbitrary subsets of X. Then an interior operator, I, on X must satisfy: 

(1) I X =X. 

(2) I A ⊆ A. 

(3) I(A ∩ B) = I A ∩ I B. 

(4) II A = I A. 

On this conception of space, a topology consists of a set of points, X, together with 
an interior operator, I, on X. Again, any operator that satisfes these conditions 
defnes a topology on X. (Thus, there may be many different topologies on any 
givensetofpoints.) 

Although these two ways of viewing space may seem quite different, from a 
mathematical point of view they are interchangeable. Starting from a collection of 
open subsets of X, we can defne the interior of any set S  ⊆ X to be the union of 
all open sets contained in S: 

[ 
Interior (S) = {Oopen | O ⊆ S} 

13 



  

 
 

 
                 

      

   

             
             
     

 
   

  
             

             
               

             
             

            
              

                 
                 

                
              

  

  

    

 

  
              

                 

 
           
           

Or,starting fromaninterioroperatoron X, wecan defneanopenset asaset that 
is equal to its own interior: 

S is open if and only if Interior (S) = S 

The technicalities here are, for the moment, not essential. The point is just that 
information about spatial structure is encoded in the collection of open sets, or 
alternatively, the topological interior operator. 

1.4.2 Topological semantics 

But what does any of this have to do with modal logic? 
In the late 1930’s, McKinsey and Tarski were studying what they thought of as 

the ‘algebra’ of topology. A topological space can be represented as the Boolean 
algebra of all subsets of the space. Here the interior operator is conceived of as 
an operator on the algebra itself, taking elements of the algebra (subsets of points) 
to other elements of the algebra.14 Thus, a topological space is represented as a 
Boolean algebra with an operator. Viewed in this way, Kuratowski’s axioms are 
really just algebraic equations. They tell us that the interior of the top element in 
the algebra is equal to the top element; the interior of any element is less than or 
equal to that element; the interior of the meet of two elements is equal to the meet 
of the interiors; andfnally the interior of the interior ofany element is equal to the 
interior of that element. More formally, the algebraic analogs of (1) - (4) are: 

(1*)  I 1 = 1. 

(2*)  I a ≤ a. 

(3*) I(a ∧ b) = I a ∧ I b. 

(4*) II a = I a. 

where ‘1’ denotes the top element of the algebra. 
Butherenowwasacuriousthing. Substituting‘D’ for ‘I’ intheseequations,15, 

and rearrangingthingsabit, whatweget is just theaxiomsfor themodal logic S4! 
14Meets, joins and complements in the algebra are, respectively, set-theoretic intersections, unions 

and complements.
15And, of course, making the appropriate substitutions for Boolean connectives—in particular, 

replacing ‘⊆’ with ‘→,’ ‘∩’ with ‘&,’ and ‘=’ with ‘↔.’ 
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Or, conversely, substituting ‘I’ for ‘D’ in the axioms for S4, what we get is the al-
gebraic version of Kuratowski’s axioms for a topological interior.16 In other words, 
a set of axioms introduced by Lewis and Langford to formalize the ordinary notions 
of possibility and necessity were the very same axioms (under this translation) that 
describe topological space, or space as it is understood mathematically! 

This discovery must have been quite surprising. A friend of mine, D. Sarenac, 
likes to imagine the following scenario. It is sometime in the early 1930’s and C. 

I. Lewis and C. H. Langford are puzzling over what exactly the new axioms for 
modal logic should be. Langford is tending to the fre; Lewis is sitting in an arm-
chair nearby, pen and paper in hand. The two men are engaged in the following 
conversation: 

Lewis: So, Langford, about those axioms for our new system of ‘necessity’ and 
‘possibility’. . . 

Langford: Yes? 

Lewis: Well, Iwas wondering. Suppose that ‘Necessarily P’ is the case. Does 
itfollowthatPisthecase? 

Langford: Yes, sir, I believe it does. If P is necessarily true, then P must, at the 
very least, be true, right? 

Lewis: Okay, I’m with you there, Langford. But how about this. Suppose ‘Nec-
16The modal logic S4 in the language L consists of some complete axiomatization of classical 

propositional logic, PL, some complete axiomatization of the minimal normal modal logic, K, say 
the axiom: 

K : D(φ → ψ) → (Dφ → Dψ) 
and the rule: 

N : ` φ ⇒ ` Dφ 

togetherwiththespecialS4axioms: 

T : Dφ → φ 

4 : Dφ → DDφ 

With a bit of work, K together with N yield: D(φ ψ) (Dφ Dψ). This states that the ∧ ↔ 
intersection of the interiors of tworegions is equal to the interiorof the intersection of those regions. ∧ 
N states that the interior of the entire space is the space itself. T states that the interior of a region is 
a subset of that region. Finally, 4 together with T states that the interior of the interior of a region is 
just the interior of that region. The connection to Kuratowski’s axiomatization of the interior operator 
should now be clear. 
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essarily P’ is the case. Does it follow that ‘Necessarily, Necessarily P’ is the 
case? 

Langford: That’s a tough one, sir... 

Reasoning in this way, the two men arrive at a system of axioms and rules of 
inference that they think captures the English-language ‘necessity’ and ‘possibility’ 
modalities.17 How extraordinary that these axioms should coincide perfectly with 
Kuratowski’s axioms for topological space! 

In the topological semantics, a model consists of a topological space together 
with a valuation function. Here formulas are true or false not at a possible world, 
but at a point in a given topological space. The Boolean connectives are interpreted 
in just the way you would imagine: a disjunction is true throughout the union of 
the set of points where each disjunct is true; a conjunction is true throughout the 
intersection of the set of points where each conjunct is true; and a negation is true 
throughout the complementof the set of points where the negated formula is true. 
The important clause, as always, is the modal one, and this is where the topological 
semantics gets its name. The formula ‘Dφ’ is true throughout the interior of the 
set of points where ‘φ’ is true. We say that a formula is satisfed by the model if it 
is true throughout the entire space, and is valid in the space if it is satisfed in every 
modeldefned over the space.18 

What these defnitions tell us is that each topological space picks out, seman-
tically speaking, some set of modal formulas—namely, thesetof formulas that are 
valid in that space. In other words, to each topological space is associated some 
collection of sentences in the given propositional modal language. But nowwe can 
ask some fundamental questions: Do different topological spaces pick out different 
setsofformulas?Moreover,isthesetofformulaspickedoutbyagiventopological 
spaceaxiomatizable? Does itcoincidewith thetheoremsofanyknownaxiomatic 

17In fact, of the fve axiomatic systems for modal logic that Lewis and Langford proposed, they 
weresaidtofavorthesystemS2asaformalizationofthe Englishlanguage‘necessity’operator. 

18More formally, in the topological semanticsa modelconsists of a pair, hX,V i, where X is a 
topological space and V : P → (X) is a valuation function that assigns to each propositional 

P variable P some subset of the space X. We extend the valuation function, V , to the set of all 
formulas by the following recursive clauses: 

V (φ ∨ ψ) = V (φ) ∪ V (ψ) 
V (¬φ) = X �V (φ) 
V (Dφ) = Int(V (φ)) 

We say that a formula, ‘φ,’ is satisfed in the model if V (φ) = X. Finally, ‘φ’ is valid in X if ‘φ’ is 
satisfed in every model defned over X. 
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P ∨ Q 
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¬P 

Figure 4: A topological model in the real plane, R2. Here P is true throughout the 
disc;Q is truethroughouttherectangularregionofspace. 

system? In particular, does it coincide with the theorems of S4? This last question 
can be broken down into two more specifc ones: Is it the case that every theorem 
of S4 is valid in the given space? And: Is it the case that every formula valid in 
the space is a theorem of S4? Respectively: Is S4 sound and complete for the 
topological space? 

Soundness, you will have noticed, is had for free. Indeed, this is the real content 
of the connection between the S4 axioms and Kuratowski’s axioms for topology. 
The axioms of S4, interpreted topologically, just restate the conditions that a topo-
logical interior must satisfy in order to count as an interior operator at all. So of 
course they are valid. But what about completeness? Here things are much more 
complex. Completeness of S4 for a given topological space, X, is the claim that 
every validity in X is provable in S4: 

|=X φ ⇒ ` S4 φ 
17 



  

               
                  

  
     

               
             

    

  

  

   

It is helpful to restate this claim in an equivalent way, by taking the contrapositive. 
Thus, completeness says that if φ is not a theorem of S4, then φ is not valid in X. 
In symbols, 

6`S4φ ⇒ |=X φ 

Putting things this way allows us to see that completeness is really a claim about the 
fexibility of a given topological space—the availability, in that space, of a broad 
enough class of refuting models. 

In 1944, Tarski and McKinsey proved a very strong completeness result that is 
sometimes called the Tarski Theorem, and which is in some ways the culmination 
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of their work on the topological semantics. The result is that S4 is complete for 
any dense-in-itself metric space. (A metric space is a space in which we can defne 
a distance function; a dense-in-itself space is a space where every point is the limit 
of other points in the space.) Dense-in-themselves metric spaces include the most 
familiar and widely studied topological spaces—for example, the real line (indeed, 
any fnite dimensional Euclidean space), the rationals, Cantor space, and so on. If 
we think of Euclidean space as our space, then the Tarski theorem says that S4 is 
the logic of space as we know it.19 

1.5 Measure and probabilistic semantics 

Tarski’s work is part of an algebraic tradition in modal semantics, in which formu-
las are interpreted not in relational structures, but in Boolean algebras with opera-
tors. The idea here was that just as classical propositional logic is interpreted, at the 
most general level, in Boolean algebras, so too propositional modal logic should be 
interpreted in Boolean algebras with operators that interpret the new modal sym-
bols. What kind of operators? The modal axioms of an existing axiomatic system 
dictate what is needed. We saw that in the case of S4, the appropriate operator 
was one that satisfes Kuratowski’s four axioms—or the algebraic version of those 
axioms. But once we’ve put things in this general algebraic way, it’s clear that we 
need not restrict our attention to Boolean algebras that arise, in the way described, 
from pointed topological spaces. Indeed, we can interpret S4 in any Boolean alge-
bra together with an interior operator that satisfes (1*) - (4*).20 

What other algebras are of interest? Here we should recall the second of 
the perspectives on the topological semantics mentioned at the beginning of this 
chapter. Beginning with an interest in existing mathematical structures—namely, 

topologies—we take interest in the topological semantics because it allows us to 
describe these structures using modal languages. What we are interested in is, to 

reiterate, such questions as: What logics do such structures give rise to? What is the 
expressive power of modal languages vis-à-vis these mathematical objects? To 

19The Tarskitheorem can be seen in botha positive and negative light. On the positive side, it tells 
us that any dense-in-itself metric space has the resources to refute all non-theorems of S4. Viewed 
in this way, the result is, again, a statement about the availability of counter-models in the given 
topological space. Fixing a topological space, we can ask of interesting modal formulas, what do 
such refuting models look like? What is their geometry, say, on the real line? On the negative side, 
the resultgroupstogether many different spaces that have quite different features. Tosay that S4 is 
the logic of any dense-in-itself metric space is to say that as far as the sentences of the basic modal 
language go, we cannot tell these spaces apart. This says something important about the expressive 
power of the basic modal language, interpretedtopologically. 

20Of course, there is no guarantee that this will yield a complete semantics, only a sound one. 
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what extent can such languages describe and discriminate between different kinds 
of topological spaces? This point of view is quite natural. Topologies are funda-
mental objects in mathematics, and the fact that we can talk about them in a formal 
modal language is entirely non-trivial. Tarski’s completeness results show that S4 
characterizes any dense-in-itself metric space—and in particular, Euclidean space 
of any fnite dimension. 

But Euclidean space has, in addition to topological structure, measure struc-
ture. Different subsets of the reals have different size or measure. This measure 
structure is quite distinct from topological structure. Sets that appear large from a 
topological point of view may be small, or insignifcant from a measure-theoretic 
point of view. (Take, for example, the rationals, which are dense in the reals, but 
have measure zero.) What if we could interpret modal languages in a Boolean al-
gebra that encoded not simply the topological structure of Euclidean space, but it’s 
measurestructure? 

1.5.1 Measure 

To get a feel for measure, consider the following simple game. You have, in front of 
you, a ruler which is exactly one meter in length. The left end of the ruler is marked 
by a zero, and the right end is marked by a 1; points in between are marked by their 
distance in meters from the left endpoint. Your opponent chooses a region of the 
ruler, by specifying any set of points that she likes, and a dart thrower prepares to 
throw one hundred darts at the ruler in sequence. Your job is to guess how many of 
those darts will land within the region of the ruler selected by your opponent. The 
closer your prediction is to the actual outcome, the more points you make in the 
game. Assuming that the darts land on the ruler in a more or less random fashion, 
what should your strategy be? 

Here we can make a number of simple observations. If your opponent selects 
any interval, then the probability that the dart lands in that interval is equal to the 
length of that interval. So, for example, ifyourfriendselects the interval [1 , 3], the 4  4 
probability that a random dart lands in the selected region is 2 

1. Likewise, if your 
friend selects some fnite union of disjoint intervals, say [ 1 , 1] [ 3 , 7], the prob-4 2 ∪ 4 
ability that the dart lands in the selected region is equal to the sum of the lengths 
of the intervals, or 3. But what if the region selected is more complex? What if 8 
your opponent selects, e.g., the collection of all rational points in the interval? Or 
all irrational points? Is there a way of saying, for anyregion of the ruler, what the 
probability of hitting that region is? Here we run into some practical obstacles. 
For example, although your opponent would have no trouble naming the region of 
the interval consisting of all rational points, there would be no way to determine— 
indeed,nofactof thematter—whetherthedart landedinthatregionornot(given 
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that the dart has non-zero thickness). Likewise for sets like the irrationals, the Can-
tor set, and so on. More troubling still, assuming the Axiom of Choice, there are 
regions of the ruler that cannot even be named. This is because such regions are not 
constructible—they cannot be picked out explicitly. Nevertheless, if we accept the 
Axiom of Choice, such regions do exist. Is there a well-defned probability that the 
dart lands in one of these regions?21What we are after here is a notion of measure. 
Wewould like to know what proportion of the interval or the ruler is taken up by 
any given set, so that we can say what the probability is of a random dart landing 
in that set. 

In 1901, H. Lebesgue defned what is now the standard measure on the real 
line. He showed that while there is no way to defne a ‘nice’ measure on every 
subset of the reals which extends the notion of length for intervals, we can defne 
suchameasureonaverylargeandimportantclassofsubsets(theBorelsubsets,or 
more generally, Lebesgue-measurable subsets). Without going into the mathemat-

ical details, we can describe this measure by saying that it (1) extends the notion of 
length for intervals, (2) is translation-invariant, and (3) is countably additive. In other 
words, the measure of any interval is equal to its length; “pushing” a mea- surable 

set up or down the real line does not change its measure; and the measureof any 
countable union of disjoint sets is the sum of the measure of the individualsets.22 

When we restrict Lebesgue measure to the interval [0, 1], as we’ve been doing, 
this function captures the familiar notion of probability. The measure of a given 

region of the interval is just the probability that a dart hitting the interval at random 
lands in that region (leaving aside practicalities having to do with thethickness of 
the dart). It is important to note that thereare many subsets of the real interval [0,1], 

which are non-empty but nevertheless have measure equal to zero.The simplest 
example is a singleton set a , where a is any point in the interval[0,1] (seeNote { }
22). In the game we described, the probability of hitting any one of these sets with a 

dart is precisely zero. This does not mean that this event cannot occur. Events 
which have probability, or measure zero, are not impossible; it is simply that no 

fnite number, however small, can capture the likelihood of their 
21It is well-known that one needs the Axiom of Choice to prove the existence of non-measurable 

subsets of the reals. Thus someone who denied the axiom could insist that all subsets that really 
exist are measurable. Here one is reminded of Bill Clinton’s famous line: “It depends on what the 
meaning of the word ‘is’ is.”

22Thisalready allowsustoanswersomeofthequestionsposedabove. Themeasure,forexample, 
of the set of rational points is precisely zero. Why? The measure of any individual point is the same 
as the measure of any other (by translation-invariance). Moreover, the measure of an individual point 
is zero, because if it were non-zero, any countably infnite collection of points in the real interval [0, 
1]wouldhave infnitely large measure(bycountableadditivity)! But ifeachpoint has measurezero, 
then any countable set has measure zero as well (again, by countableadditivity). Since the rationals 
arecountable, themeasureof therationals iszero. 
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occurrence. 
From a measure-theoretic point of view, measure-zero subsets of the reals are 

insignifcant. Taking this thought seriously, what if we were to literally ignorethe 
existence of such sets? What if, in other words, we were to identify any two sub-
sets of the reals that differ from one another by a set of measure zero? Imagine, 
if you will, that you have blurry glasses, and that these glasses do not allow you 
to distinguish between such sets.23 Seen through these glasses, the real interval, 
[0, 1], consists, for you, of some collection of blurry regions, each of which has a 
precise measure (namely, the measure of any one of the sets which make up that 
region). Formally, these regions make up a Boolean algebra: the algebra of all mea-
surable subsets of the real interval, modulo sets of measure zero. This is a measure 
algebra—orBooleanalgebra, inwhicheachelementhasameasurebetween0and 
1.24 We call it the Lebesgue measure algebra. 

1.5.2 Probabilistic semantics 

The Lebesque measure algebra encodes information about the measure structure 
of the real line. Just as we used Boolean algebras generated by topological spaces 
to get a topological semantics for modal logic, Scott’s idea was to use measure 
algebras to get a probabilistic semantics for modal logic. Formally, a probabilistic 
model in thebasic propositional modal language is a pair, hM,V i, where M is the 
Lebesgue measure algebra, and V : P → is a valuation function that assigns 
to each propositional variable some element of the algebra, . We would like to M M 
extend the valuation function to all formulas in the language by a recursive truth 
defnition. ForBooleanconnectives,thedefnitionsarestraightforward: 

V (φ ∨ ψ) = V (φ) ∨ V (ψ) 

V (¬φ) = �V (φ) 
but how to interpret the D-modality? Here of course, we must construct an in-
terior operator on the algebra, , but we’ve said nothing at all about how to do M 
this. Indeed, how can we be sure that there isnon-trivial interior operator on this 
algebra? 

The key, again, is to consider the topological structure of the reals from an al-
gebraic point of view. Just as there are open subsets of real numbers, so too we 
defne open elements of the Lebesgue measure algebra. We say an element of the 
algebra is open if it has some representative which is an open subset of the real 

23The metaphor of seeing through blurry glasses is due to F. Artzenius. See (1).
24More formally, a measure algebra is a Boolean σ-algebra with a positive, normalized measure. 

SeeDefnition3.3.4below. 
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interval, [0, 1].25 Thus, for example, the element of the algebra corresponding to 
any interval, or any fnite disjoint union of intervals, is open. (Take as your repre-
sentative set the interval without its endpoints.) But recall the interchangeability of 
the two ways of defning topological structure described in Section 4.1. Once we 
have open sets we have an interior operator, and vice versa. In topology, we defne 
theinteriorofaset,A,astheunionofopensetscontainedinA: 

[ 
{C open | C ⊆ A} 

The algebraic analog of this topological defnition is not hard to fnd. Indeed, 
we defne the interior of an element, a, in the Lebesgue measure algebra as the 
supremum of all open elements dominated bya: 

_ 
{c open | c ≤ a} 

(Oneof thedeeplessonsofTarski’swork in thisarea is that topologicaldefnitions 
are essentially algebraic, whether we focus on those conditions placed on open 
sets or on an interior operator.) Completing the recursive defnition of truth for the 
probabilistic semantics, we have: 

V (Dφ) = I(V (φ)) 

In the probabilistic semantics, we interpret the basic propositional modal language 
in the modally-expanded Lebesgue measure algebra—or algebra together with in-
terior operator. Each formula is assigned to some element of the algebra, and thus 
acquires the probability—or measure—value associated with that element. We say 
that a formula ‘φ’ is satisfed ina probabilistic model if the value of that formula is 
the top element of the algebra (i.e., V (φ) = 1.) Equivalently, ‘φ’ is satisfed if the 
probabilityof‘φ’ is1. 

The modally-expanded Lebesgue measure algebra encodes information about 
both the topological and measure structure of the real line. Other topological spaces 
and measures give rise to different measure algebras. But now we can ask all of 
the familiar questions that we asked about the topological semantics in this new 
setting. Do different measure algebras give rise to different sets of validities? Is 
the set of validities of the Lebesgue measure algebra axiomatizable? If so, does it 
correspond to any known axiomatic system? In particular, does it correspond to 
thetheoremsofS4? Inotherwords, isS4soundandcompletefortheprobabilistic 
semantics? At the time I began work on this project, these questions had not yet 

25Note that the collection of open elements, so defned, satisfes the algebraic analog of the con-
ditions on open sets. In particular, the top and bottom elements of the algebra are open, the meet of 
any two open elements is open, and the join of an arbitrary collection of open elements in open. 
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been answered. Indeed, much of the work that occupies the chapters ahead is 
devoted to settling some of the most pressing among them. The third and fourth 
chapters, in particular, show that S4 is complete for the Lebesgue measure algebra; 
that the probabilistic semantics can be extended to more complex, dynamic modal 
languages, and fnally, that we get nice completeness results here too. Reading 
between the lines, the reader will also discover what I take to be something of an 
analog to the Tarski Theorem in the measure-theoretic setting. 

It is important, before getting lost in the mathematics, to reiterate two different 
perspectives from which we might approach the probabilistic semantics developed 
in these pages. On the one hand, one might take interest in the fact that we have 
here a new semantics for existing axiomatic systems—one, moreover, with prob-
abilistic features that set it apart from other well-known semantics. This point of 
view may be attractive to those philosophers dealing in the many formal areas of 
philosophy which exploit probability theory for philosophical purposes. Indeed, 
the new semantics provides a very general and fexible framework for attaching 
probability values to formulas in rich, modal languages in a systematic way. It is 
not implausible to think that this could be of use in such areas as Bayesian epis-
temology and rational choice theory, where we model agents as having precise 
credences in propositions, and not just full-fedged beliefs. Other applications may 
be found in philosophy of language—in particular, where it comes to understand-
ing the various components of meaning in natural language. In an early paper 
addressing such issues, H. Field argues that Popper’s probabilistic semantics for 
classical logic can be put to that use. Indeed, Field understands agents as attach-
ing conditional probabilities to formulas in a classical language, and argues that 
the conceptual role component of meaning should be understood in terms of these 
probabilities. According to Field, two propositions, P and Q, have the same con-
ceptual role for an agent, S, just in case for any proposition C, 

ProbS (P|C) = ProbS (Q|C) 

where ProbS is the conditional probability function representing S’s beliefs. Field 
shows that Popper’s probabilistic semantics for classical propositional logic can, 
with some effort, be extended to predicate logic. Although there are signifcant 
differences between Popper’s semantics for classical logic and the probabilistic 
semantics presented here, the latter does give us the tools to interpret not just clas-
sical languages, but rich modal languages probabilistically. The greater expressive 
power of these languages, as well as the ease with which the present framework 
can be exported to predicate and multi-modal settings, may prove useful to those 
sympathetic to Field’s endeavor.26 

26See (12). 
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On the other hand, one might approach the new semantics from a more math-
ematical point of view. Just as topologies are basic objects in mathematics, so too 
are Borel measures. As we’ve seen, topologies together with Borel measures give 
rise to modally-expanded measure algebras. To what extent can modal languages 
describe, discriminate between, and express the various properties of these measure 
structures? There is, in my view, no one correct way to think about the probabilistic 
semantics: each of the perspectives announced here has its merits, and will, with 
luck, yield new ways of developing the work begun here. But before launching 
into that work, I want to briefy mention one surprising philosophical application. 
The application is in the feld of metaphysics, or mereology. 

1.6 GunkviatheLebesguemeasurealgebra 

Space as we conceive of it in mathematics and physics consists of dimensionless 
points. We typically describe not just positions in space, but trajectories, velocities 
and accelerations in terms of three-dimensional spatial coordinates. Over the years, 
however, some have sought to deny that points, or point-sized parts, are genuine 
parts of space or matter. In the words of P.Roeper, 

Points are not parts or elements of space; a point is a location in space. As a 
consequence, points are not the primary bearers of spatial properties and spatial 
relations, nor the primary objects of spatial mappings. This role belongs rather 
to the parts of space. 

According to what is sometimes called a ‘gunky’ picture of space, space consists 
of regions that can be arbitrarily small, but no region is literally dimensionless. 
Space, on this conception, is not chunky—there are no smallest bits of space which 
cannot be broken up further—but rather gunky—each region can be further broken 
up into smaller regions. We can put this loose picture of space in the form of a 
more precise mereological thesis: 

GUNK (S): Every region (part) of space has a proper subpart. 

The thesis as stated is a thesis about physical space. But there is, of course, a 
parallel thesis about physical matter that could, in principle, be held independently 
ofanyviewaboutspace: 

GUNK (M): Every region (part) of matter has a proper subpart. 
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It’s easy to see that these principles rule out the existence of point-sized bits of 
space or matter. As points in space are literally dimensionless, they cannot be 
further broken down into proper subparts.27 

1.6.1 Motivations 

There may be many motivations for adopting a gunky conception of space or mat-
ter, some more prosaic, and others reaching deep into phenomena in mathematics 
and physics.28 Frank Arntzenius, for example, motivates a gunky conception of 
time by reference to Zeno’s paradox, and argues as follows. Zeno argued that if 
time consists of instants of zero duration, then an object is always stationary during 
a single instant of time. So an object is never in motion. But if objects are never in 
motion,howdotheysucceedin moving? 

Aristotle’s response to the paradox was to relinquish the idea that there are 
zero-sized instants of time. Instants of time can be of arbitrarily small duration, 
he thought, but no single instant has duration strictly equal to zero. Although this 
move avoids the problem raised by Zeno, one might think that there are other, less 
costly responses to the paradox. To be in motion, one might say, is just to be in 
different locations at different instants of time. The fact that at a single point-sized 
instant of time an object is stationary is not, on this response, a problem for the 
possibility of motion at all. Stationary objects at single instants is just the stuff of 
which motion is made.29 On this response, however, motion (or velocity) is not an 
intrinsic property of the state of an object at a given moment. Indeed, motion as 
conceived of here is a property that arises from the relationship between the state 
of an object at one time, and the state of that object at past or future times. If that 
is the case, it would seem wrong to say that the instrinsic state of an object (or of 
all objects in the world) at any given instant determines the state of that object at 
future instants. In short, some form of physical determinism seems to be threatened 
here. 30(1) 

27One could, in principle, affrm one of these twotheses about gunk and deny the other. Thus, one 

could believe for example that while matter is gunky, space is not. Arntzenius and Hawthorne argue 
against this sort of split position. “If we are to restrict the Difference thesis to material objects, we 
need some reason for tolerating zero measure differences in the domain of spatiotemporal objects 
while prohibiting them within the realm of the material. We are not aware of any such reason.” (2). 
In what follows, we focus primarily on the thesis GUNK (S), but the reader who is interested only in 
a gunky view of matter can make the appropriate substitutions.

28These arguments appear in (1), (2) and (35). 
29There is something bizarre, to my ear, about saying that an object is ‘stationary during a single 

instant.’ To be stationary, one wants to say, is to be in the same place across some stretch of time. 
30Onemightarguethat thesortofdeterminismherethreatenedis toostrongtobeplausible. Why, 

after all, should it be only the intrinsic properties of an object that determine its future states? On 
the other hand, ifmotion isa product of the relationship between states of the objectat one time and 
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Another motivation for gunk, again discussed in (1), is more mathematical in 
nature. It is well known that if we admit points in space, then using the Axiom of 
Choice, we can prove the existence of non-measurable subsets of Euclidean space. 
The existence of such sets, however, leads to the Banach-Tarski paradox. What 
Banach and Tarski showed is that we can divide a sphere in three-dimensional Eu-
clidean space into fnitely many parts (fve, to be precise), move these parts around 
without stretching or deforming them in any way (thus, performing only rigid mo-
tions), and end up with a sphere that has twice the volume of the original. This 
result is quite startling, and depends on the existence of non-measurable sets. (Re-
call that Lebesgue measure is translation-invariant. Thus some of the parts into 
which we divide the sphere must be non-measurable.) One response to the para-
dox is, of course, to give up the Axiom of Choice. Without that axiom we would 
not be able to prove the existence of non-measurable sets, and so we would not be 
able to divide the original sphere into the kind of parts needed to get the paradox 
going. But although the Axiom of Choice was initially greeted with controversy, 
it is now accepted by practically all practicing mathematicians. Retaining all of 
pointy mathematics while doing away with the axiom is not a realistic option. An-
other response would be to deny the existence of point-sized regions of space (or 
matter). On this response, we can allow that points and the axiom have a role to 
play in mathematics, but deny that they have a similar role to play in the correct 
understanding of physical space and matter. In other words, we can preserve points 
in a purely abstract, mathematical setting, while at the same time staving off the 
ideathatasphere-shapedregionofspaceormattercouldbedoubledatnocost. 

These motivations do not form anything like a complete list, and even as they 
stand are quite tenuous.31 Nevertheless, in the words of F. Arntzenius and J. 
Hawthorne, “The idea that all physical objects are gunky seems suffciently sweep-
ing, interesting, and plausible that it isworth examining.” (2, p. 441)32 

1.6.2 The approach based on regular closed sets 

Suppose then, for the moment, that space and/or matter really are gunky. The 
question now arises: How should we model space mathematically? What model of 
space respects standard mereological assumptions together with the gunky picture 
of space sketched above? 

statesoftheobjectatfuturetimes, itseemswrongtosaythatthestateofmotionofanobjectatan 
instantdeterminesfuturestates(whetherornotmotionisanintrinsicproperty). It is inpartthefuture 
states,one wantstosay,thatmakeupmotiontobeginwith.

31For a much more thorough discussion of motivations, see (1). 
32Here the gunk thesis is defended for physical objects, but as we saw above, Arntzenius and 

Hawthorne do not think it plausible to adopt a gunky conception of matter together with a pointy 
conception of space. See(2). 
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This challenge—as well as the traditional response to it—is most famously as-
sociated with A.N. Whitehead. As early as the 1920’s, Whitehead was investigating 
the possibility of doing geometry without points. The idea was, as Biancino and 
Gerla point out, to conceive of “axiomatic systems in which the concept of a point 
is defned from primitive terms more easily interpretable in nature.” 33 Whitehead 
took as a topological primitive the notion of two regions being connected. Intu-
itively, a region A is connected to B if A and B overlap, or at least share some 
boundary point. In 1929, Whitehead showed that his axiomatization of this rela-
tion was satisfed in regular closed algebras (defned below), and that one could 
use such algebras to model pointless geometry. Points, lines and surfaces were 
constructed as mathematical abstractions on these algebras of solid regions. 

Recall that a regular closed set is a set that is equal to the closure of its own 
interior. In symbols: 

A = Cl(Int(A)) 

where the closure of a set is the set together with its topological boundary. The 
simplest example of such sets is a closed sphere in n-dimensional Euclidean space. 
(Theinterioroftheset istheopensphere,andtheclosureoftheinterior is theorig-
inal, closed sphere.) 34The algebra of regular closed sets can be constructed from 
the collection of all subsets of a topological space in the following way. Starting 
with the set of all pointy subsets of a space, we write A B if the closure of the ∼ 
interior of A is equal to the closure of the interior of B. It is not diffcult to see that 
the relation ‘ ,’ so defned, is an equivalence relation. Taking equivalence classes ∼ 
we get a Boolean algebra in which each element of the algebra has exactly one 
regular closed representative—that set equal to the closure of the interior of any set 
intheequivalenceclass.35 

Modeling gunky space in regular closed algebras brings with it many advan-
tages. The Boolean structure of the algebra satisfes standard mereological as-
sumptions, which we do not repeat here.36 Moreover, the regular closed algebra 

33See (6), p. 431. 
34For an example of a closed set in one-dimensional Euclidean space that is not a regular closed 

set, consider the Cantor set. This set has no interior, so the closure of its interior is empty.
35Operations in the algebra of regular closed sets are defned as follows: 

a ∧ b = Cl (Int (A ∩ B)) 
a ∨ b = A ∪ B 
�a = Cl(X �A) 

where X is the entire space, A and B are regular closed subsets of X, and a and b are the corre-
sponding elements of the algebra.

36In fact, standard mereology does not admit a null element, whereas such an element is present 
in the algebra of regularclosedsets. 
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that arises from fnite-dimensional Euclidean space (indeed, from any Hausdorff 
topology) is non-atomic: every non-zero element in the algebra dominates some 
other, non-zero element. More formally, for every non-zero element a in the alge-
bra, there is an element b such that 0 < b < a. In words, every region of space 
has a proper subregion. This fact about regular closed algebras is precisely what 
is required by the thesis GUNK (S) given above. But, as J.S. Russell points out, 
Whiteheadian space is not just mereologically distinctive, but also topologically 
distinctive. To see this, let us say that a region x is an interior part of y if x  y, ≤ 
and x is not connected to any region disjoint from y (where two regions a and b 
are disjoint if there is no region that is part of both). Then in Whiteheadian space, 
every region has an interior part. Russell calls space that satisfes this condition 
‘topologically gunky.’ As he argues, “Topological Gunk is a natural extension of 
Mereological Gunk: not only does every region have a proper part, it has a part 
which is strictly inside of it.”37 

More recently, however, powerful arguments have been leveled against the idea 
of interpreting space (or at least actual, physical space) in regular closed algebras. 
These arguments stem from diffculties associated with defning a reasonable mea-
sure on the algebra. Indeed, the gunk theorist wouldlike to beable to talk not just 
about mereological structure, but also about the size of various regions of space. 
Ideally, he would like to be able to say, of any region of space or matter, what the 
size of that region is. Moreover, in keeping with the spirit of gunk, many gunk 
theorists would add that no region of space has size equal to zero. We can put these 
desiderata concerning size in the form of two additional theses: 

SIZE: Every region (part) of space has a precise size. 

NO ZERO: No region (part) of space has size equal to zero. 

The notion of size in play here is not one of, e.g., cardinality. In talking about 
the size of a region, we distinguish between, e.g., the size of a cone that is one 
meter tall, and a cone that is 100 meters tall, each with the same base. In fnite-
dimensionalEuclidean space, it is mostnatural to take the size ofa regiontobe its 
standard  Lebesgue measure. 

Letusthenrestrictourattentiontoasimplecase: thereal line(orone-dimensional 
Euclidean space). How to construct a measure function on the algebra of regular 
closed subsets of this space? As we noted already, each element in the algebra 
contains oneregularclosed representative set. Since this set isBorel, it is measur-
able. Thus we can assign to each element of the algebra the Lebesgue measure of 
itsuniqueregularclosedrepresentative. Buthereiswherewerunintodiffculties. 

37See (35), p. 6. 
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The measure of a countable fusion (or, in algebraic terms, join) of disjoint regions 
of space should equal the sum of their individual measures. This is the principle 
of Countable Additivity. But the measure function just defned violates this con-
straint. To see this, consider a thick, or ‘fat’, Cantor set. We construct the set in 
stages, starting with the real interval, [0, 1], and at the frst stage of construction, 
removing the open middle 1 of that interval. We are now left with the intervals 4 
[0, 3] and [5 ,1]. At the second stage of construction, we remove the open middle 8 8 
1 of these remaining intervals. In general, at stage n we remove the open middle 1 

0).38 (1)n+1ofallremainingintervalsfromthe previousstage(n 39 The sum 4 ≥ 
of the measures of the removed intervals is 

1 1 1 X 2n ( )n+1 = X ( )n = 1/2 
4 4 2 

n≥0 n≥0 

but the union of these intervals is equivalent, in the algebra of regular closed sets, 
to the entire interval, which has measure equal to 1. 

How serious a problem is this? Unfortunately, moving to a different measure 
on the algebra will not help matters. It can be shown that any measure defned 
on every element of the algebra of regular closed subsets of reals is not countably 
additive. We could, perhaps, look to measures that are only defned on some ele-
ments of the algebra, but even this does not look promising. After all, we must at 
the very least have measures for intervals, and there really is no natural alternative 
to identifying the measure of an interval (or an element of the algebra represented 
by an interval) with its length. But the example just given shows that already at 
the level of intervals, countable additivity fails. It seems right to conclude with 
F. Arntzenius that “our attempt to do physics in this kind of pointless topological 
space is in big trouble. (1, p. 18) 

1.6.3 The measure-theoretic approach 

In recent work, Arntzenius proposes an alternative, measure-theoretic approachto 
modeling gunky space, which makes signifcant revisions to Whitehead’s pro-

gram.40 Arntzenius, like Whitehead, takes as primitive a relation of ‘connected-
ness’ among regions of space, but his aim is to allow for models in which we have 

38The set constructed here is the complement of the Smith-Volterra-Cantor set, and has measure 
1. This is not mandatory. An easy manipulation of the lengths of intervals in the construction yields 2 
a Cantor set of measure arbitrarily close to zero or one. For a fuller discussion of the Smith-Volterra 
Cantor set, see(42).

39The intervals removed are open intervals, as is standard in the Cantor construction. But of 
course, each such interval is identifed in the algebra with its closure, which is a regular closed set 
and has the samemeasure. 

40See (1). 
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aworkablenotion ofmeasureaswell. OnArntzenius’sapproach, insteadof iden-
tifying sets in pointy space if the closures of their interiors are equal (as we do in 

the algebra of regular closedsets), we identify sets that differ from one another bya 
set of Lebesgue-measure zero. Thus gunky space is modeled not via algebras of 

regular closed sets, but via measure algebras arising from pointy topological spaces 
together with Borel measures. To simplify matters, let’s focus for the moment on 
one dimensional Euclidean space with standard Lebesgue measure. The algebra 

correspondingtothisspaceisjusttheLebesguemeasurealgebradefnedabove—the 
verysamealgebrausedtogiveaprobabilisticsemanticsformodallanguages.The 

frst thing to note is that in this algebra individual points disappear. Indeed, individual 
points have measure zero, so modulo measure zero any singleton set is identifed 

with the empty set, and so represents the bottom element of the algebra.41 Moreover, 
like the algebra of regular closed sets, the Lebesgue measure algebra is atomless: 
every non-zero element of the algebra dominates some other, non- zero element. 

Again, this means that our model satisfes the thesis GUNK (S)given above.  
These two facts are no doubt congenial to a gunky point of view.Butthereal 

advantages in turning to the measure-theoretic approach are that here, unlike in 
Whiteheadian space, we can defne a workable notion of measure. Indeed, since 

representative sets in a given equivalence class in the algebra differ from one another 
byasetofmeasurezero,wecandefnethemeasureofanelementinthealgebrato 
be the measure of any of its representative sets. This measure functionis countably 

additive. Moreover, only the bottom element of the algebra—thatelement 
represented by the empty set—has measure zero. Inwords, every regionofspace 

has a precise size, and no region, except the null region, has size equal to 
zero. So far, things seem quite promising. 

But in addition to mereological and measure structure, we would like space to 
have topological structure, and here is where certain complications arise.42 Stan-
dard topological structure is, as we know, defned in terms of a collection of prim-
itively distinguished open (or closed) sets (a closed set is the complement of an 
open set). In Euclidean space, for example, basic open sets are open spheres, or 
spheres without any of the points on their surface. But according to Arntzenius, 
Hawthorne, and Russell,43, the distinction between open and closed sets isone 

41More generally, for any point, a, and subset, A, of Euclidean space, the sets A �{ a }and A ∪{a 
are equivalent in the Lebesgue measure algebra. } 

42I take mereologicalstructure tobe Boolean structure, or thatstructurecaptured bythe ordering 
relation, ‘ ,’ on the algebra. A more careful presentation of this material would state explicitly ≤ 
which mereological assumptions are made, but in this short introduction we do not have the space to 
spell out the details. For a fuller discussion, see (35). 

43See (1), (2), and (35). 

39 

http:arise.42
http:algebra.41


  

 
 
 
 

     
 

          
  

              
       

 
             
            

              
               

 
              

            
                

  
                

              
       

              
    

           
                

      
           

               
            

           
            
             
             

            
              

           

                  
                 

                  
         

 
 

which cannot be made in the setting of the Lebesgue measure algebra:44 

“Mathematical orthodoxy casts topological structure in terms of primitively dis-
tinguished open point-sets. But among the spaces we are concerned with here 
are those that make no distinction between closed and open regions; so the or-
thodox approach won’t do.” (35, p. 253) 

“The topological structure we will give pointless regions can not be given in the 
same way that we gave pointy spaces topological structure, namely in terms of 
a distinction between open and closed regions. For that is exactly the kind of 
distinction that we do not believe exists if reality is pointless. ” (1, p. 237) 

Why is it that, according to these philosophers, there can be no distinction be-
tween open and closed regions on the measure-theoretic approach to gunk? Many 
open sets differ from their closure by a set of measure zero (where the closure of a 
set is the smallest closed set containing it). Consider, for example, any open inter-
val. This set differs from its closure only at the endpoints. If sets of measure zero 
do not exist, then the distinction between such an open set and its closure would 
seem to collapse: these two regions of space could not be told apart. The con-
clusion these authors have drawn is that if we are to have topological structure on 
the Lebesgue measure algebra, it must be topological structure of a non-standard 
variety—topology done, not in terms of primitively distinguished open (or closed) 
sets, but in terms of other primitive notions that do not rely on the existence of 
pointsorsetsofmeasurezero. 

The adoption of non-standard topological primitives is not itself anything new. 
Indeed, Whitehead did this in 1929, when he took as primitive the binary relationof 
‘connectedness,’ and used this to axiomatize all of pointless geometry. Some years 

later, A. Grzegorczyk assumed asprimitive therelation of being separated, 
providing an axiomatization of that relation which allowed him, like Whitehead,to 

defne points.45 More recently, and in the same tradition, P.Roeper takes as 
primitive both the relation of connectedness and the property of being limited, and 
axiomatizes these notions by way of defning what he calls ‘region-based topol-

ogy.’46 In taking the relation of connectedness and the property of being limited as 
primitive, Arntzenius attempts to show that the measure-based approach can, in 

44One should be careful not to read too much into talk of the distinction between open and closed 
sets. Depending on the topological space, we may have sets that are both open and closed. Finite-
dimensional Euclidean space (Rn) is connected, and so in this special case there are no sets of this 
kind. In general, however, this is not the case.

45See (14). 
46See (34). 
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some sense, mimic the topological structure that Roeper gives for Whiteheadian 
space: that Roeper’s axioms are satisfed not just in regular closed algebras, but 
also, toa large degree, in measure algebras.47 

But is the turn to non-standard topological primitives necessary in the measure-
theoretic setting? Let us re-examine the arguments given against standard topolog-
ical structure in more detail. As Arntzenius and Hawthorne argue: 

“...When No Zero is combined with our mereological assumptions, further re-
sults follow. In standard point-set topology, we can distinguish an open region 
from its closure. Typically, each has the same volume, since the latter differs 
from the former only by including the boundary points of the former. Can the 
Gunk lover admit a distinction between such closed and open parts...? 

Assume for reductio there is some open piece, call it ’Open’, that is a proper 
part of some closed piece, call it ’Closed’, each of the same volume. Remain-
der48 tells us that there will be a part x of Closed that does not overlap with 
Open, such that Closed is the fusion of x and Open. Assuming Finite Additiv-
ity, it follows that x has zero measure, violating No Zero. So, once No Zero 
is assumed, we cannot admit the standard distinction between open and closed 
regions.” (2, p. 443)49 

Summarizing the argument: Because in many cases an open set differs from its 
closure by a set of measure zero, there can be no distinction between open and 
closed regions. 

I now want to argue that such arguments fall fat. While turning to non-standard 
topological primitives makes sense in the context of Whiteheadian space (where in 
some sense every element is open, and there are no boundary regions), this is not 
the case for the measure-theoretic setting, where space is not topologically dis-
tinctive in the same ways. Of course, in the Lebesgue measure algebra, there is no 
distinction between sets that differ by a set of measure zero. So if an open subset of 
the reals and its closure have the same measure, then these two sets are identifed. 
This is the case for many familiar subsets of the real line: for example, any interval, 
or fnite union of intervals. But it does not follow that we have to throw out the 
distinction between open and closed regions altogether. In the measure-based se-
mantics for modal languages, we defned an open element of the Lebesgue measure 

47For Roeper’s axioms, see Appendix A. 
48The Remainder principle states: If x is a part of y and not identical to y then there is some z that 

ispartofy thatisdiscretefromx, suchthaty is thefusionofxandz (wherex isdiscretefromy iff 
there is no part that x shares with y). 

49My emphasis. 
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algebra to be any element that has an open representative, or representative that is 
an open subset of the real interval, [0,1]. Likewise, let us defne a closed element 
of the algebra to be the Boolean complement of an open element.50 An immediate 
question presents itself: Are there any elements of the algebra that are not open? 
(Equally: are there any elements of the algebra that are not closed?) Consider the 
thick Cantor set mentioned above. The element of the Lebesgue measure algebra, 
c, corresponding to thisset is notopen. Indeed,asweshow in Chapter 2, thethick 
Cantor set differs from every open subset of reals by a set of non-zero measure. 
Moreover, the same example shows that there are open elements of the algebra that 
are not equal to their own closure. Indeed, the complement of c is an open element 
of the algebra that has measure strictly less than 1,51and its closure is the top ele-
ment in the algebra. Here, then, we have a non-trivial algebraic distinction between 
open and closed regions of space: precisely the sort of distinction with which to do 
standard topology. 

One may object at this point that the thick Cantor set and its complement are 
rather special sets. “According to the defnitions given,” you say, “mostelements of 

the algebra are bothopenand closedand so thedistinction between ‘open’ and 
‘closed’ in the algebra cuts little water.” There are two ways to respond. First, 
althoughitistruethatmanyoftheopensubsetsofthereallinethatwetalkaboutin 
mathematicsdifferfromtheirclosurebyasetofmeasurezero(henceareidentifed 
with their closure in the Lebesgue measure algebra), the sets that we tend to talk 
about are a very restricted few. By necessity, such sets are ones that can be simply 
described. But limits on our discursive powers should not mislead us as to the 

variety of subsets of the real line. There are many sets that we are not accustomedto 
talk about because they are not easy to defne, but which exist all the same. (In a 

certainsense,eventhethickCantorset isquitesimple. Ithasaveryregular, fractal 
structure.) So while it may be true that for many familiar subsets of the real line, 
the distinction between closed and open collapses once we move to the Lebesgue 
measure algebra, there is, I think, no sense to the notion that ‘most’ subsets are 
like this. But second, if space really is pointless, then we should expect to modify 
our view of space in sometimes signifcant ways. The distinction between simple 
open regionsof the real line (e.g., intervals) and theirclosures must, of course, 
fallbythewayside. Anotherwaytoputthefact thatsuchregionsdonotdiffer 

from their closure, is to say that they have no boundary. Now the boundary ofan 
openinterval inthereal line is just the endpointsof the interval. Surelyona 

gunky conception of space—a conception of space on which there are no point-
50Equivalently, aclosed element isanyelement thathasaclosedrepresentative, or representative 

that is a closed subset of the real line. 
51Hence, the complement of c is not equal to the top element in the algebra. 
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sized parts—we should deny that such regions exists. But unlike in Whiteheadian 
space, there are regions of space that are properly called ‘boundary.’ Indeed, the 
thick Cantor set is one example. It has non-zero measure, and yet has no interior. 
On the measure-theoretic approach to gunk, this result is quite welcome. It is not 
that boundary regions do not exist, but rather that true boundary regions—regions 
thatdonotsimplyconsistoftheendpointsofintervals—arequitespecial. 

Still, many questions remain. Arntzenius and Roeper take as primitive the rela-
tion of connectedness and the property of being limited. These notions have some 
intuitive appeal. It would be nice if we could reproduce them in the measure-
theoretic setting without taking them as primitives—either by defning those rela-
tions in terms of the open-closed distinction, or by adding additional topological 
structure to our measure models. In Appendix A we suggest a way to this this 
according to the second approach. (By the isomorphism results of Chapter 4, the 
frst approach will not work.) Further questions concern our ability to extend these 
defnitions to reduced measure algebras that do not arise from Euclidean spaces. 
Unfortunately, we do not have the time or the space to pursue those questions here. 
I hope, at any rate, that these loose remarks point in a direction in which this work 
will be furtherdeveloped. 

1.7 Game plan 

The dissertation is organized as follows. In Chapter 2, we develop in detail the 
topological semantics, and show that Tarski’s completeness result for the real line 
can be proved in a simplifed way, using well-known fractal curves. In Chapter 
3, we develop the probabilistic semantics, and prove that S4 is complete for this 
semantics. Also in this chapter, we show that intuitionistic propositional logic 
(IPC) is complete for the subframe of open elements in the Lebesgue measure 
algebra. In Chapter 4, we show that the probabilistic semantics can be extended to 
dynamic topological logics—or multimodal logics intended to describe dynamic 
spaces. Here we prove that S4C is complete for the probabilistic semantics and 
develop some interesting isomorphism results that allow us to extend completeness 
to other measure algebras. The reader interested in some, but not all, of the results 
that follow is invited to skip ahead to the relevant chapter. Individual chapters are 
written so as to be readable independently of one another. 
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Chapter 2 

Topological Semantics for Modal 
Logic: The Tarski Theorem 
Reproved 

Abstract. This chapter explores the connection between fractal geometry and 
topological modal logic. In the early 1940’s, Tarski showed that the modal logic 
S4 can be interpreted in topological spaces. Renewed interest in Tarski’s topolog-
ical semantics can be seen in such recent papers as (5), (18), (39), and (40). In this 
chapter we introduce the use of fractal techniques for proving completeness of S4 
and non-trivial extensions of S4 for a variety of spaces in the topological semantics. 
These techniques are developed to relate the somewhat peculiar non-Hausdorff tree 
topologies with more familiar Euclidean and other metric topologies. The main re-
sults of the chapter are completeness of S4 for the binary tree with limits, and 
completeness of S4 for the Koch Curve, a well-known fractal curve. An important 
corollary is a new and simplifed proof of completeness of S4 for the real line, R 
(originallyproved byTarskiand McKinseyin (27)). 
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2.1 Introduction 
1 In the late 1930’s, Tarski developed a topological semantics for modal logic in 
which formulas are interpreted in topological spaces. In a topological model, each 
propositional variable, P , is assigned to an arbitrary subset of a given topological 
space—the set of points where P is true. Conjunctions, disjunctions and negations 
are interpreted as set-theoretic intersections, unions and complements; the ‘neces-
sity,’ or ‘D’-modality is interpreted as a topological interior operator. (Thus, ‘Dφ’ 
is true throughout the interior of the set of points where ‘φ’ is true.) Although this 
semantics was largely forgotten in the years since Kripke’s relational semantics 
was introduced, the last ffteen years have witnessed a burst of renewed interest. 
Indeed, researchers have come to see Tarski’s work as the foundation of the much 
broader project of using modal logic to describe space and spatial structures. As 
early as 1944, Tarski and McKinsey showed that the modal logic S4 is sound and 
complete for any dense-in-itself metric space (27). Their proof was notoriously 
complex, and in recent years, completeness for the special case of the real line was 
reproved in such papers as (5), (18), (26), (29), and (38). In this chapter, we ex-
plore new, fractal techniques for proving a variety of completeness results in the 
topological semantics. 

The main result of the chapter is a proof of completeness of S4 for the Koch 
Curve, a well known fractal curve. An important corollary is a new proof of com-
pleteness of S4 for the real line, R. The fractal techniques introduced in these 
proofs are, as we argue, the chapter’s main contribution to the topological seman-
tics for modal logic. The results of Section 4 and the techniques developed be-
low are not tailor-made for solving completeness of S4 for the real line or for the 
slightly wider problem of completeness of S4 with respect to interesting classes 
of metric topological models. The main technique is developed to relate formally 
the somewhat peculiar non-Hausdorff tree topologies with more familiar Euclidean 
and other metric topologies. As we will see, completeness is transferred from an 
appropriate tree to a metric space by means of a known fractal curve. Complete-
ness for both the Koch Curve and R are best seen as examples of the power of the 
fractal techniques introduced. 

The chapter is organized in fve sections. Section 1 introduces the basic propo-
sitional modal language and Kripke (relational) semantics, and recalls some basic 

completeness results. Section 2 demonstrates the use of trees as Kripke frames, 
and shows that S4 is complete for the infnite binary tree. Section 3 explores the 

topological semantics for the modal language, introduces the complete binary tree 
1This chapter is a slightly modifed version of a paper co-authored with Darko Sarenac, “Fractal 

CompletenessTechniquesinTopologicalModalLogic.”See(23). 
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(or infnite binary tree with limits), and shows that S4 is complete for this tree. Sec-
tion 4 is the part of the chapter where we prove our main results. In this section we 
introduce the Koch Curve, and simultaneously prove completeness of S4 for the 
Koch Curve and for the real interval [0,1]. The reader familiar with modal logic 
can skim through much of Sections 1 and 2. Furthermore, the reader familiar with 
Tarski’s topological semantics can leaf through all but the proof of completeness 
of S4 for the complete binary tree in Section 3. If the reading seems somewhat 
terse in places, suffcient background information can be obtained by reading the 
excellentandverycurrentsummaryofthestateoftopologicalmodal logic in(40). 

2.2 Kripke semantics for S4 

2.2.1 Language, models, and truth 

Let the modal language L consist of a countable set, P = {Pi | for all i ∈ N},  
of atomic variables and be closed under binary connectives →, ∨, ∧ and unary 
operators ¬, D,3. 

A frame is an ordered pair, F = hU, Ri, where U is a set of points called the 
universe, and R is a binary relation on U . We say F is transitive (refexive) if R is 
transitive (refexive). We interpret L in a model M = hF , V i, where F is a frame, 
and V : P →(P U ) is a valuation function. 

Formulas are interpreted on points x U and we write M, x = φ to mean ∈ 
that in the model M at the point x, φ holds. More specifcally for a model M = 
hhU,Ri,V i and a point x ∈ U , the ternary relation M, x |=φ is interpreted induc-
tivelyas follows. For P ∈ P, 

M, x |= P ⇔ x ∈ V (P ) 
M, x |=(φ ∨ ψ) ⇔ M, x |= φ or M, x |= ψ 
M, x |=¬φ ⇔ M, x |= φ 
M, x |=Dφ ⇔ M, y |= φ for all y such that Rxy 
M,x |=3φ ⇔ M,y |=φ for some y such that Rxy. 

The interpretation for ∧, → and ↔ can be obtained from the above via the 
standard defnitions. We could have defned 3P as D P but the defnition was ¬ ¬ 
added for the completeness of presentation. 

Defnition 2.2.1 (Logic S4).  The modal logic S4 in the language L consists of 
some complete axiomatization of classical propositional logic PL, some complete 
axiomatization of the minimal normal modal logic K, say the axiom: 
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C : (DP ∧ DQ) → D(P ∧ Q), 

and the rules: 
RN: ` φ ⇒ ` Dφ, and 
RM: ` φ → ψ ⇒ ` Dφ → Dψ; 2 

and, fnally, the special S4 axioms: 
4 : DP → DDP 
T : DP → P 

We defne standard validity relations.  Let F = (U, R) be a frame, and let 
M = ( F , V ) be a model over F  . For any formula φ    L , we say φ is true in M 
if M, x = | φ for all x  U∈. We say ∈φ is valid in if F φ is true in every model over 

. If is a class of frames, we say φ is valid in if φ is valid in every frame in . F C C 
Finally, the logic S4 is complete for  if every formula valid in   is a theorem of C C 
S4 (i.e., can be derived from the axioms together with the rules of inference). With 
slight abuse of notation, we will sometimes say that S4 is complete for for a single 
frame F, where we mean S4 is complete for {F}. 

2.2.2 Kripke’sclassiccompletenessresults 

Defnition 2.2.2 (Rooted Frames and Models). A rooted (or pointed) frame is a 
triple, F = (U, R, x), where (U, R) is a frame, x ∈ U , and for all y ∈ U , (x, y) ∈ 
R . 

That is, the point x is R-related to every other point in U (or x “sees” all y U , ∈ 
for short). 

Theorem 2.2.3. [Kripke] 
The modal logic S4 is sound and complete for (i) the class of all transitive, 

refexive frames; (ii) the class of all fnite transitive, refexive frames; (iii) the class 
of all rooted, fnite, transitive, refexive frames. 

We will not reproduce this classic result here. Most standard introductory pre-
sentations of modal logic contain proofs of (i), (ii), and (iii). For Kripke’s original 
proof we refer the reader to (20); for a more contemporary variant, see (7). 

2ThissomewhatunusualaxiomatizationofKandhenceofS4 makesthetopologicalconnection 
introduced later on in the chapter more explicit. C interpreted topologically states that the intersec-
tionofopensisopen,RNstatesthattheuniverseisopen,RMstatesthat ifPisasubsetofQ,then 
the interior of P is a subset of the interior of Q. Furthermore, T states that the interior of P is a subset 
of P, and, fnally, 4, together with T, states that the interior of the interior of P is just the interior of P. 
This should strongly remind the reader of Kuratowski’s axiomatization of the interior operator. 
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In the next section we recall that the infnite binary tree, T2, with a transitive, 
refexive relation, R2, can be used to build models for the modal language. Indeed, 
the logic S4 is complete for the class of models over the frame T2: a modal for-
mula φ is a theorem of S4 if and only if it is valid in every model over T2. Below, 
we show how to view T2(and, for that matter, any transitive, refexive frame) as a 
topological space. We then introduce an uncountable topological extension of T2 
that we call T+. This new structure extends T2by adding to it uncountably many 2 
“limit nodes,” corresponding to each (infnite) branch of T2. Our main contribution 
to the theory of tree topologies is the proof that S4 is complete for T+. As we 2 
mentioned above, the signifcance of T2 

+ for us lies in large part in its use in ex-
tending topological completeness results to various metric and fractal spaces. We 
start with a brief discussion of T2 viewed as a relational frame.3 

2.3 Infnite binary tree 

2.3.1 Themodalviewoftheinfnitebinarytree,T2 

Let Σ = 0, 1 , and let Σ∗ be the set of all fnite strings over Σ including , the { } 
empty string.  Let Σo be the set of all countably infnite strings over Σ, and let h i  

o Σ+ = Σ∗ Σ∪.  For x, y ∈Σ∗, let x y denote the concatenation of x and y.  
We will also write xy for x y. Concatenation is further defned for x Σ∗ and ∗∗ 

Σo y  ∈ Σo, but not for x, y . 
Note that Σ∗ is closed under concatenation, that is, if ∈x, y Σ∗ then ∗ x y Σ∗ . 

Similarly, Σ+ is closed under “right-concatenation” in the following sense: for ∈ 
x    ∈ Σ∗ , y  ∈ Σ+ , x ∗ y Σ+ . 

We let ∈si : Σ∗ →Σ∗ for i ∈ 0{ , 1 }be the function defned by si(x) = x i. 
Thus for example s0(1) = 10, and s1(110) = 1101. We call s0(x) the “left ∗ 
successor” of x and s1(x) the “right successor” of x. 

We can now defne the binary relation R2 on Σ∗ as the transitive refexive 
closure of s0 ∪ s1 (where si is viewed here as a relation, rather than a function). 

Defnition 2.3.1 (T2, a modal frame). T2 = hΣ∗ , R2, h·ii 

We call T2 the infnite binary branching tree or full binary tree. We call the 
empty string, , the root, and for any x T2, s0(x) and s1(x) are called the h·i 
immediate successors of x. For simplicity of notation, we will often leave out the 
root, h·i, denoting T2 by hΣ∗ , R2i. 

3The formal details of the next section follow the presentation in (40). The details can be skipped 
by a reader familiar with the notion of tree unravelling. 
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Fact 2.3.2. Every node x is accessible from the root in fnitely many steps along 
R2 and hence in one step by transitivity. Every x T2 has exactly two immediate ∈ 
successors and countably many successors altogether. 

A valuation function V : →P P (Σ∗) defnes a model 2 over T2. Since T2 is 
transitive and refexive any such model validates the S4 axioms—i.e., S4 is sound 
for T2. 

Claim 2.3.3. For any fnite,  transitive,  refexive,  rooted,  model M ,  with root  x, 
there is a valuation V over T2 such that, 

M,x |=φ ⇔ hT2, V i, h·i |=φ 

for every φ ∈ L. 

(The proof of the claim is postponed until the next section.) 
It follows from Claim 2.3.3 and Theorem 2.2.3 that every nontheorem of S4 

can be shown false on some model based on the frame T2.  Indeed, if φ is not 
a theorem of S4, then by Theorem 2.2.3, there is some fnite rooted frame    = F 
U, R, x and valuation V such that   , V , x = φ. But then by Claim 2.3.3, h i hF i | 
there is a valuation V 0 over T2 such that T2, V 0 ,  = φ. Thus any nontheorem h i h·i | ¬ 
fails on T2, and S4 is complete for the class of models over T2. 

2.3.2 Building a p�morphism from T2 onto fnite Kripke frames 
We prove Claim 2.3.3 by constructing a — p  morphism f : T→ F , where F = 
(U, R, x) is a fnite, rooted, transitive and refexive frame. We briefy recall the 
notion of p�morphism. 

2  

, R0 0 Defnition 2.3.4 (p-morphism). Let F = hU, R, xri and F0 = hU 0 , x i be r 
rooted frames. A p-morphism from F to F0 is a function f : U → U 0 satisfying: For 

0 ∈ U 0 any x, y ∈ U and y , 
(i) f(xr) = xr 

0 ; 
(ii) If Rxy, then f(x)R0f(y); 

0 0 (iii) If R0f(x)y , then there is a z ∈ U, Rxz and f(z) = y . 
We say that f is a surjective p-morphism if, in addition, f(U) = U 0 . 

Fact 2.3.5. If there is a surjective p�morphism f from F to F0 , then for any 
valuation function V : P   → P (U 0), any point x U , and any modal formula φ, we 
have:4 

4The function [f �1] : P(U 0) → P(U ) raises the type: for A ⊆ U 0 , [f �1](A) = {y | f (y) ∈ 
A}. Note that although f �1 is likely not a function, [f �1] is always a function, but of a higher type. 
Thus, the function [f�1] ◦ V : P → P(U), i.e., it is a valuation function. 

40 



  

  

  

 

 

 
 

    
      

 
 

 
 
 
 
 

                   

               
                 

 
   

              
         

         
             

      
    

    
     

    
     

      
 

   
     

     
  

 
 

    
                  

    

         

      

 
                 

       
    

 

 

    

  
   

 

 

    

� 

hF , [f�1] ◦ V i, x |= φ ⇔ hF 0 , V i, f(x) |= φ 

Thus, to prove Claim 2.3.3 it suffces to show that for any fnite, transitive, refex-
ive, rooted frame F = hU, R, xi, there is a surjective p�morphism f from T2 to 
F. 

Let the cardinality of U in  be n. Notice that no point in U has more than F 
n distinct successors and x, the root, actually has n successors. Wenow construct 
the function f . For 1 i  n(= U ), we defne the set of functions si : U    U ≤ ≤ | | → 
(1 i  n). For each y  U , the function si chooses the ith distinct R successor ≤ ≤ ∈ � 
of y, if such a successor exists. Otherwise si(y) = y. More formally, 

Defnition 2.3.6 (Successor functions si). For all y, s1(y) = y (s1 is the identity 
function). Fix i ∈ N, and suppose that s1(y), s2(y), ..., si�1(y) are already de-
fned, and that Rysk(y) for all k < i. Then we let si(y) be some z ∈ U such that 
Ryz and sk(y) 6= z for all k < i, if there is some such z. Else, si(y) = y. 

Example 2.3.7 (A set of successor functions). Let ∈y U have 3 distinct successors 
including y itself: y, w and z and no others. Then if | U   | = 5, we let s1(y) = y, 
s2(y) = w, s3(y) = z, but s4(y) = s5(y) = y as we have run out of distinct 
successors. 

Defnition 2.3.8. [UNRAVELING p MORPHISM] 
We defne a linear ordering on the nodes in T2.  This can be done in many ways, 
but for specifcity, we let, e.g., h·i < 0 < 1 < 00 < 01 < 10 < 11 < 000 < ... 
[BASE STEP.] First let f (h·i) = x. 

5 [RECURSIVE STEP.]  Until f is defned for all nodes in T2, fnd the least   node t 
such that f(t) is defned, but neither f(t 0) nor f(t 1) is defned. Assume that ∗ 
f(t) = y. Then let, 

f(t∗1) = s1(y), f(t∗01) = s2(y), f(t∗001) = s3(y), ... f(t∗0n�1∗1) = sn(y) 

where 0n�1 is a sequence of n �1 zeros. Finally, let, 

f(t ∗ 0) = f(t ∗ 00) = f(t ∗ 000) = ... = f(t ∗ 0n) = s1(y) = y. 

Lemma 2.3.9. [Unravelling Lemma] Let f be the function defned in Defnition 
2.3.8. Then f is a p�morphism. 

5On the ordering just given. 
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y 

y y 

y y1 

y y2 

y y3 

y y4 

Figure 5: The recursive step of the defnition of the p � morphism f . Here | U = 5, 
f (t) = y, s1(y) = y, s2(y) = y1, s3(y) = y2, s4(y) = y3, and s5(y) = y4. | 
Following the defnition, f (t  01) = y1, f (t  001) = y2,  f (t   0001)  = ∗ ∗ 
y3, f (t 00001) = y4, and all other points visible in the diagram are labeled y. ∗ ∗ 
No successor of texcept for the eleven nodes (really ten and t) explicitly shown in 
thediagramislabeledatthisstage. 

Proof. (i) It suffces to show that if R2st and t is the immediate successor of s, 
then Rf(s)f(t). This can be seen by inspecting the recursive step of Defnition 
2.3.8.  If f (s) = y, then f (t) is si(y), for some i ∈ { 1, ..., n }, but, by defnition 
of si, we know Rysi(y) for each such i. (ii) We need to show that if Rf (t)z, then 
there exists s  T2 such that R2ts, and f (s) = z.  We let f (t) = y and recall ∈ 
that s1(y), s2(y), ..., sn(y) exhaust the distinct R successors of y in .  Then — F 
for some i 1, ..., n , si(y) = z. If t was ever the least node satisfying the ∈ { antecedent condition of Defnition 2.3.8, then some successor of t was labeled by 
si(y)—i.e., by z. Otherwise, t is a successor of some other node t0 , which did at 

t0 some stage satisfy the antecedent condition of Defnition 2.3.8 and t = 0k for ∗ 
some k ≤ n. But then, at that stage, for some successor t00 of t, f (t00) = y and 
t00 u was undefned for any nonempty fnite sequence u. Thus at some future ∗ 
stage a successor of t00 was labeled with si(y) (i.e. z). But a successor of t00 is a 
successor of t by transitivity of R2, as desired. 

Putting Fact 2.3.5 and Lemma 2.3.9 together, we obtain the desired complete-
ness result: 

Fact 2.3.10. The modal logic S4 is complete for the class of models over the frame 
T2 = (Σ∗, R2, h·i). 

In the next section we look at modal language L and the frame T2 = (Σ∗,R2) 
from a topological perspective. 
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2.4 TopologicalsemanticsforS4 

We now turn to topology and the topological interpretation of the modal language 
L. Long before Kripke-semantics for the modal language was established as the 
yardstick, A. Tarski and J.C.C. McKinsey noted an irresistible connection between 
Lewis and Langford’s axioms for the modal logic S4, and Kuratowski’s axioms 
for the topological interior operator. The topological interpretation of modal logic 
exploitsthisconnection.6 

Tarski’s idea was to view DA as the interior of the set A and 3A as the closure 
of A and try to understand what kind of logical structure such an interpretation 
supported. Tarski was able to prove—in some sense quite unsurprisingly—that 
under this interpretation the logic of the interior and closure operators turns out 
to be nothing less than S4. The argument for the general case is straightforward, 
as we’ll see below. The arguments for specifc topological spaces turn out to be 
rather more involved. It is part of our goal here to try to understand where such 
complexity comes from. Let us introduce some basic background notions. 

2.4.1 Topological semantics 

A topology is a set of points with some spatial structure (one can think of it as a 
set of points glued together in a certain way). Specifcally, a topology is a pair, 
hX, J i, where X is a set and J ⊆ P(X) satisfes, 

1. X, ∅ ∈ J , 
2. If A, B ∈ J , then A ∩ B ∈ JS , 
3. If for all , then Ai ∈ J i ∈ I i∈IAi∈J 

. 
If in addition a topology satisfes, 

T 
4. If Ai ∈ J for all i ∈ I, then i∈I Ai ∈ J 

then the topology is called Alexandroff. As we’ll see, most interesting topologies 
are not Alexandroff. More (structure) is not always better, as a cursory comparison 
between Italian and American pizza quickly reveals. 

Although a topological space is strictly speaking a pair, (X, J ), we will for 
simplicityofnotation(andwherethemeaningisclear)oftendenoteboththetopo-
logicalspaceitselfandtheunderlyingsetofpointsbyX. ThesetsinJarecalled 

6Equivalently, one can exploit the connection between the 3-version of the S4 axioms and the 
behavior of the closure operator C, via the defnition I(A) = �C( �A). (In words, the interior of a 
set is the complement of the closure of the complement of that set.) 
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open sets. We say a set is closed if its complement is open. The union of open 
subsets of a set, A, is called the interior of A: 

[ 
Int(A) = {Oopen|O ⊆ A} 

The closure of a set is the complement of the interior of the complement: 

Cl(A) = �Int �(A) 

(Equivalently, apoint x is in the closure of A if every open set containing xcontains 
some element in A.) 

We wish to interpret our language L in topological models. A topological 
model is a pair M = h X, V i where X is a topology and V  : →P P (X) is a 
valuation function. We defne a ternary relation M, x = φ that as before holds 
between a point in a model and a formula. The cases for the atomic and Boolean 
formulas are the same. The only real difference is in the modal cases of D and 3. 
We want Dφ to be true at a given point x if x is in the interior of the set defned 
by the formula φ. Then also 3φ should hold at x if x is in the closure of the set 
defned by φ . Weencode these observations in the following truth defnitions: 

M, x |=Dφ ⇔ ∃O open such that x ∈ O and ∀y ∈ O, M, y |=φ. 
M,x |=3φ ⇔∀Oopen,x ∈ O implies∃y ∈ Osuch thatM,y |=φ. 

Let X be an Alexandroff topology and let x ∈ X . Consider the set Ox = T O open | x O ∈ , i.e., the intersection of all open sets containing x. Note that { } 
since our topological space is Alexandroff, this is a non-empty open set. We defne 
the binary relation R on X: 

Rxy ⇔ y ∈ Ox. 

Claim 2.4.1. FX = hX, Ri is a refexive, transitive frame. 

Proof. For refexivity, note that x ∈ Ox. For transitivity, suppose Rxy and Ryz. 
Then y ∈ Ox and z ∈ Oy. From the frst inclusion it follows that Oy ⊆ Ox. So we 
have z ∈ Oy ⊆ Ox, and hence Rxz. 

Moving in the reverse direction, we can generate a topology from a refexive, 
transitive frame. Let F = h X, R be a refexive, transitive frame. We will say that 
a subset O of X is open if it is upward-closed under R (where a set O is upward-i 
closed under R if x  ∈O and Rxy implies y   O). Note that the collection of 
open sets are closed under fnite intersections, arbitrary unions, and contain both 
the empty set and the entire space X. Let XF be the topological space defned in 
thisway. Then, 
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Claim 2.4.2. XF is Alexandroff. 

Proof. The reader can verify that XF is a topological space. To see that it is 
Alexandroff, suppose thatis a collection of open sets in the topol-{Oi | i ∈ T ogy and let x ∈ and I}Rxy . Then since each O  is upward-closed under , i∈I Oi i T T 
y ∈ Oi for each i ∈ I. But then y ∈ i∈I Oi, and i∈I Oi is upward-closed under 
R, as desired. R 

The reader is invited to verify that the operations of generating a transitive, 
refexive frame from an Alexandroff topology, and of generating an Alexandroff 
topology from a transitive, refexive frame just described are inverses of one an-
other: if one starts with an Alexandroff topology, then generates a transitive re-
fexive frame, and then, from this frame, generates an Alexandroff topology in the 
manner described, one ends up with the original topological space (and similarly, 
when one starts from a transitive, refexive frame). When a frame and topological 
space are generated in this way by one another, we will sometimes say they “cor-
respond.” The next proposition states that corresponding frames and topological 
spaces satisfy the same modal formulas: 

Proposition 2.4.3. Let X be an Alexandroff topology and let F be a transitive, 
refexive frame. If X and F correspond, then for any formula φ in L, any x ∈ X,  
and any valuation V  : P →P(X), 

hF , V i, x |= φ ⇔  hX, V i, x |= φ 

Proof. The proof is by induction on the complexity of φ. Weshow only the modal 
clause, φ :≡ Dψ. We have, 

hF, V i, x |= Dψ ⇔ hF, V i, y |=ψ for all y such that Rxy 
⇔ hF, V i, y |=ψ for all y ∈ Ox 

⇔ hX,V i,y |=ψ for all y ∈ Ox (by IH) 
⇔ hX, V i, x |= Dψ 

What these observations tell us is that Alexandroff topologies are nothing more 
than refexive, transitive frames. This is both useful and limiting. On the positive 
side, it allows us to transfer a variety of important results directly to the topological 
semantics. On the negative side, most interesting topologies are non-Alexandroff 
(e.g., metric spaces). Much of our work in what follows will be constructing “nice” 
maps between metric spaces and non-Alexandroff topologies. 

45 



  

 
 

 

 

 

 
 
 
 

   
 

             
              

               
           

 
   

      
   

      
  

       
 

       
  

   
    

                         
   

                 

               
        

                 
               
              

       

     
     

    

    
 

       

 
 

 

 

 

  
 

   

   

 

2.4.2 Interior maps and truth preservation in the topologicalseman-
tics 

The work in the sections below requires us to recall some additional topological 
notions. In the topological semantics, the notion of an interior map plays the role 
of p �morphism in the Kripke (or frame) semantics. In fact, when the topologies in 
question are Alexandroff, the notions of p �morphism and interior map correspond 
exactly. 

Let X and Y be topological spaces. 

Defnition 2.4.4 (Open Map). A map g : X → Y is open if for every open subset 
O ⊆ X, g(O) is open in Y . 

Defnition 2.4.5 (Continuous Map). A map g : X → Y is continuous if for every 
open subset U ⊆ Y , g�1(U ) is open in X. 

Defnition 2.4.6 (Interior Map). A map g : X Y is interior if it is both open and → 
continuous. 

Defnition 2.4.7 (Full-Interior Map). A map g : X Y is full-interior if it is → 
interior and surjective. 

Fact 2.4.8 (Full-Interior Maps Preserve Modal Formulas). Let g : X Y →be a full-
interior map, and φ any formula of the standard propositional modal language 
L. Let V 0 : P → P(Y ) be a valuation function and let V = ([g�1] ◦ V 0). 7 Then, for 
any x ∈ X, 

hX, V i, x |= φ ⇔ hY, V 0i, g(x) |= φ 

Proof. The proof is by induction on the complexity of φ. The base case and the 
Booleancasesarestraightforward. Forthemodalcase: 

hX, V i, x |= Dψ ⇔ hY, V 0i, g(x) |= Dψ 

we use the preservation of open sets along g to show the left-to-right direction, and 
we use the continuity of g to show the right-to-left direction. The details of the 
proofcanbefoundin,e.g., (40). 

Now suppose that X and Y are Alexandroff topologies, and let FX and FY be 
the corresponding frames. Moreover, let g : X → Y be a full-interior map. Then, 

Fact 2.4.9. The function g reinterpreted as g : FX → FY is a p�morphism. 

Proof. See e.g., (40). 
7Thus V is a valuation function on X, defned as the composition of g�1 with V 0 . 
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 Just as p �morphisms play an important role in transferring completeness re-
sults in the relational semantics, interior maps play a similar role in transferring 
completeness results in the topological semantics. In the remainder of this section, 
we recall some of the better known topological completeness results for S4. We 
then use a particular sequence of interior maps to prove completeness for the Koch 
fractalandtherealinterval[0,1]. 

2.4.3 TopologicalcompletenessresultsforS4 

Theorem 2.4.10. The logic S4 is sound and complete with respect to 

(i) the class of all topologies (McKinsey & Tarski); 

(ii) the class of all fnite topologies (Kripke); 

(iii) any dense-in-itself metric space (McKinsey &Tarski); 

(iv) the infnite binary tree, T2 (see below) (van Benthem, Gabbay). 
In this chapter we will show, 

(v) a direct construction for the Koch Curve, K. The Minkowski-Bouligand di-
mension of K is 1.26. (This chapter or McKinsey &Tarski).8 

(vi) the Wilson tree or complete binary tree, T+, equipped with the topology gen-2 
erated by fnite initial segments [see Defnition 2.4.11]. (This chapter) 

Proof. (ii) follows from completeness for fnite frames; (iii) is proved in (27); 
(i) follows from either (ii) or (iii); (iv) follows from Lemma 2.3.9, originally 
due to van Benthem and Gabbay.9 For (v) and (vi), see the later sections of this 
chapter. 

Part of our goal in this chapter is to revisit (iii)—in particular, the special case 
of the real line, R—as well as to give a direct completeness proof for the Koch 
curve. We will also mention some other fractals that are useful in topo-modal 
constructions and for which completeness results can be had. We have in mind, in 
particular, a direct proof of completeness of S4 for R2 and R3 via the Sierpinski 
Carpet and Menger Sponge, respectively. 

8Since the standard topological dimension of K is 1, there is a homeomorphism h between K 
and [0,1]. Thus, weknow thatS4 iscomplete forKaswecantransfercounterexamplesviah. How-
ever, this is the frst direct completeness construction on a fractal curve of non-integer Minkowski-
Bouligand dimension, except for Cantor Set. 

9Both J. van Benthem and D. Gabby introduce a variant of the unravelling technique. 
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2.4.4 The infnite binary tree and the complete binary tree, viewed 
topologically 

The infnite binary tree, T2, is a rare object in mathematics that exhibits interest-
ing structural features from a great range of different perspectives. As we saw 
above, it has enough structural symmetry and fexibility to carry the weight of the 
completeness theorem of S4 in the relational semantics. T2recurs when we start 
thinking of space fractally. We look next at an extension of T2 called the Wilson 
tree, or complete binary tree, that allows us to prove two completeness results in 
the topological semantics. 

Wilson tree (complete binary tree), T+ 
2 

Defnition 2.4.11. Take alphabet Σ = {  0, 1 and construct the set Σ∗(Σ+) of all 
fnite (countable) strings over Σ. For any s ∈ Σ∗, let Bs = { s ∗t | t ∈ Σ+ }, i.e.,  
the set of all (possibly infnite) stringswith initial segments (where s is allowedto 
be the empty string). Let B = {Bs | s ∈ Σ∗}. Note that B is closed under fnite 
intersections (For any s, t ∈ Σ∗ either Bs ⊆ Bt, Bt ⊆ Bs, or Bs ∩ Bt = ∅), hence 
is a basis for some topology J + over Σ+. Finally, let T+ = (Σ+ , J +). 2 

Fact 2.4.12.  (i) Σ+, the underlying set of T+, is uncountable; 2 
(ii) T+ 

2 is frst countable; 
(iii) T+ 

2 isnon-Alexandroff. 
SEPARATION AXIOMS: 

(iv) T+ is T0, 2 
(v) T+ is not T1 (hence non-Hausdorff and non-metrizable) 2 

Proof. (i) follows from an injection between the set of countably infnite strings 
over Σ and the real interval [0, 1]; (ii) follows from the fact that the basis, B, is 
countable; (iii) the intersection of basic opens B0, B00, B000, ... (i.e., the countable 
sequence 000...) is not open; (iv) For s, t ∈ Σ+, s 6= t: if s is a descendant of t, 
then either Bs separates s and t (if s ∈ Σ∗) or there exists t0 ∈ Σ∗ which is a 
descendant of t such that Bt0 separates s and t (and vice versa, if t is a descendant of 
s). If neither s nor t is a descendant of the other, there exists t0 ∈ Σ∗ such that t0 is 
an ancestor of s but not of t, and Bt0 separates s and t; (v) take, for instance, s = 0 
and t=00: thereisnoopensetcontainings thatdoesnotcontain t. 

In the remainder of this section, we show that S4 is complete for T2 
+. To this 

end, recall the map f : T2 → F = hU, R, xi given in Defnition 2.8. We view this 
function now as a map, f : Σ∗ → U , between underlying sets, and extend it to a 
map, f + : Σ+ U . Moreover, we now view the frames and T+ as topological → F 2 
spaces, and the map f+ as a topological map. We show that f+ is full-interior. 
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Since S4 is complete for fnite, transitive, refexive frames, it follows from Fact 
2.4.8 thatS4 isalsocompleteforT+ . 2 

We will need a few simple infnitary notions. We begin by defning an infnite 
branch b of the tree T2. 

Defnition 2.4.13. [Countable Branch] Let b =< t0, t1, ... > be an infnite branch 
of T2. That is: 

(i) t0 =h·i; 
(ii) For each n ∈ N, either tn+1 = tn ∗ 0 or tn+1 = tn ∗ 1. 

Lemma 2.4.14. [Cycling Lemma] Let f be any function from T2 onto F = hU, R, xi, 
and let b =< t0, t1, ... > be an infnite branch in T2. Then there exists N ∈ N such 
that for all worlds x ∈ U , and all m > N , 

f(tm) = x implies f(tm) = x for infnitely many m. 

Proof. The lemma follows from the fact that U is fnite, so there are only fnitely 
many labels in U for f to “choose” from. Labels that occur only fnitely many 
timesonabranch,occurforthelasttimeatsomefnitenodeofT2. 

For a given branch b, let nb be the least such N  ∈ N. Let Ab = { f (tm) : m > 
nb }. (Thus Ab is the collection of worlds in U that label infnitely many nodes of 
the branch, b, under f). 

Note that the Lemma states that after some initial segment of b all nodes of b 
are sent by f to elements in Ab and each of these elements labels infnitely many 
nodes on the branch. 

Fact 2.4.15. For any n ∈ N and any x ∈ Ab, ∃m > n such that f(tm) = x. 

Proof. This follows from the fact that every element in Ab labels infnitely many 
nodes in b. 

Defnition 2.4.16. [Branch Labeling] Let f be a p � morphism from T2 onto the 
fnite rooted frame = U, R, x . For every branch b in T2, we let the fnite choice F h 
function C(b) return a choice of y Ab. Further, noting that every branch b has a i ∈ 
unique countable sequence in Σ∗ associated with it, we can think of the branches 
and  elements  of Σ+ interchangeably. We  defne  the  extension, f + : Σ+ →U ,  of 
f as follows:  Let tb be the element in Σ+ that corresponds to the branch b.  We    
let f +(tb) = C(b).  Thus we label each countable string in Σ+ with a node in       
Ab ⊆ U . 
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For the remainderof thischapterweview f +and f interchangeablyasamaps 
between topological spaces, frames, or simply underlying sets. From the context 
it should be clear which of these we intend. Also, we refer to ‘fnite’ and ‘limit’ 
nodesofthetree T+, withtheobviousinterpretation. 2 

Theorem 2.4.17. f+ : T+
2 → F is full-interior. 

Proof. We need to show that f + is open, continuous, and surjective. 

(Open.) Let O  ∈ + be a basic open set. Then O = Bs for some fnite node s. 
Let y = f J +(s) and let Dy = { z  ∈ U  | Ryz }. We show that f +(Bs) = Dy. 
We know that every point in Dy labels some node in Bsby the fact that f is a 
p-morphism. Thus Dy  ⊆f +(B). For the reverse inclusion, let z f +(Bs). 
Then z = f +(t) for some t   ∈ Bs.  If t is fnite then f +(t) = f (t)   Dy, 
where inclusion follows from the fact that f is a p-morphism. If t is a limit 
node, then f +(t) = f +(t0) for some fnite node t0 ∈ Bs (by construction of 
f +). Moreover, f +(t0) = f (t0)   ∈ Dy (since t0 is fnite). Thus f +(B) Dy, 
as needed. 

(Continuous.) Let U be an open set in F. Let s ∈ (f+)�1(U), and let f+(s) = 
y ∈ U. We need to show there is an open set O ⊆ T+, such that s ∈ O  2 
(f+)�1(U). Now if s is fnite, then we already know that f+(Bs) = Dy ⊆ ⊆ 
U (by proof of Open above). So s Bs (f +)�1(U ), where Bs is open. If s ∈ 
is a limit node, then there is some fnite s0 such that f +(s0) = y, and Rs0s. 
But then f +(Bs0) = Dy U and ⊆s Bs0 (f ∈+)�1(U ), where Bs0 is open. 
Thisshowsthat(f+)�1(U) isopen,asneeded. ⊆ 

(Surjective.) Surjectivity follows from the fact that x ∈ Range(f +) and f+ is 
open (where x is the root of F). 

Theorem 2.4.18. S4 is complete for T+ . 2 

Proof. By Fact 2.4.8, Theorem 4.2.3, and Theorem 2.4.17. 

In the next section, we construct a full-interior function from the real interval 
[0, 1] onto T+

2 , via the Koch Curve. That construction gives us both completeness 
of S4 for the Koch Curve, and a new proof of completeness of S4 for the real 
interval [0,1]. 
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x 

a a 

0 a 1 
3 a 2 

3 
a 1 

3 Figure 6: K1: a = 1 

x 

y2 y3 z3 z2 

y0 y1 z1 z0 

1 2 1 2 7 8 0 1 9 9 3 3 9 9 

Figure 7: K2: The length of each line segment is 1 , and the fve triangles with 9 
apex’s at y0, y2, x, z2, z0 are equilateral triangles 

. 

2.5 Fractal curves and topological completeness 

Our goal is to construct a homeomorphism between the interval [0, 1]and Koch 
Curve fractal, K, and a relatively simple full interior labelling l : [0, → 1] T2 

+ 

inspired by the construction of Koch Curve. The labeling itself provides a straight-
forward proof of completeness of S4 for the real interval. When composed with 
the homeomorphism we obtain completeness of S4 for the singleton class K, the 
Koch Curve. 

2.5.1 The Koch curve 

Recall the construction of the Koch curve, K. 
We begin with the unit interval [0, 1]. At the frst stage, K1, we let the middle 

third of the interval be “pushed up” to form two sides of an equilateral triangle with 
side length 1, as pictured in Figure 6. At the second stage we let the middle third 3 of each line segment of K1be raised to form two sides of an equilateral triangle of 
length 1. Thisgives K2 in Figure7. 

9 In general, at stage n of construction, we raise the middle third of each line 
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gn(x2) 

a b 

gn(y) =y gn(y) =y 
x0 x1 x2 x3 x4 

Figure8: Thisfgureshowshow gn actsonasinglesegment [x0,x4]of Kn�1. gn is 
the identity function everywhere except: (i) gn(x2) is the apex of the triangle, and 
(ii) gn maps the line segment (x1,x2) linearly onto a and maps the line segment 
(x2, x3) linearly onto b. 

segment of Kn�1 to formtwosidesof an equilateral triangleofside lengthequal 
tothelengthofthesegmentraised. 

The Koch curve is a limit of the construction stages in the following sense. Let 
K0 be the unit interval [0, 1]. For n = 1, 2..., let 

gn : Kn�1 → Kn 

be the obvious homeomorphism from Kn�1 to Kn. And let 

fn = gn ◦ gn�1... ◦ g1 

Thus, foreach n ∈ N, fn : [0,1] → Kn is a homeomorphism from [0,1] onto Kn. 
Finally, we let f be the pointwise limit of these functions: 

f = lim fn 
n→∞ 

and the Koch curve, K, is the range of this limit: 

K = Range(f ) 

Claim 2.5.1. f : [0, 1] → K is a homeomorphism. 

Proof. We need to show that f is bijective, continuous and open. 

1. (Bijective) Note that any two distinct points x, y ∈[0, 1] eventually end up 
on different line segments under some fn. Indeed, since x = y, we know 
d (x,y)> 0 (where d denotes the usual distance function). But the length of 
line segments in Kn is ( 1 )n .  Since ( 1 )n     0, the length of line segments 3 → 
in Kn is eventually smaller than the distance d(x,y), and x and y belong to 
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different line segments. We leave it to the reader to verify that such points 
are not identifed under f —i.e., f (x) = f (y). This shows that f is injective. 
SurjectivityfollowsfromthefactthatK =Range(f). 

2. (Continuous) We show that f is the uniform limit of continuous functions, 
hence continuous.10  Note that for any x ∈ [0, 1], d (fn(x), fn�1(x)) = 
d (gn(fn�1(x)), fn�1(x)), where d denotes the distance function in the usual 
metric on R2. Moreover, by construction of gn, gn moves points at most a √ √ 
distance of ( 3

1 )n( 2 
3 ). So d (fn(x), fn�1(x)) < ( 1 

3)n( 3 ) → 0, for all x 
[0, 1]. Thus the fn’s converge uniformly, and the uniform limit of continuous 
functions is continuous. 

3. (Open)Wefrstshowthattheimageunderfofaclosedsetisclosed. Indeed, 
if A ⊆ [0,1] is closed, then it is also compact (since [0,1] is bounded). But 
the continuous image of a compact set is compact, so f (A) is a compact 
subsetofK. Sof(A)isclosed(andbounded),asdesired.Nowsupposethat 
O ⊆ [0,1] is open. Then f(O) = f([0,1]) �f([0,1] �O) = K �f([0,1] � 
O), since f : [0,1] → K isabijection. Bytheaboveargument,f([0,1] � O) 
is closed, so f(O) is open. 

It follows from the previous claim that f�1 : K → [0,1] is a homeomorphism. 
Wenowwishtoconstructafunction l : [0,1] → T+ that is full-interior. Once we 2 

have done so, l alone will prove completeness of S4 for the real interval [0, 1], and 
the composition l ◦f �1 : K → T+ will prove completeness of S4 for the Koch 2 
curve, K. Much as we constructed f as a limit of fnite approximations, fn, we 
now construct the function l as a limit of stagewise labeling functions, ln. Indeed, 
as the reader will presently see, the functions, ln, correspond neatly to stages of 
Koch construction. 

Note above that each gn : Kn�1 → Kn sends Kn�1 to Kn by breaking up 
eachline segmentofKn�1 intofourlinesegmentsofKn. Foranylinesegment s in 
Kn�1werefertoits“successor”segmentsinKnas(inorderfromlefttoright) A(s), 

B(s),C(s) and D(s) (see Figure 9). There is an ambiguity here with respect to 
endpoints: is the point 1, for example, in the segment A([0,1])or B([0,1])? For 3 

reasons that will become clear below, we decide that B(s) and C(s) are always 
open on both ends, while the “right” end-point of A(s) and the “left” endpoint of 
D(s) are always closed. (The left endpoint of A(s) and the right endpoint of D(s) 
are either open or closed, depending on whether the segment s itself is open or 

10Hereweviewthefunctionsfnasfunctionsfromthespace[0,1] toR2,withtheusualmetrics 
on each of these spaces. 

53 

http:continuous.10


  

 
 

  

 

 

 
 
 
 

 
 
 

 
 

 
  

 
 

 
              

              
 

      
  

   
               

               
     

             
       

 
 

 
  
  

  

   
   

                  
                  

            
 
            

     
 

 

  
  

                
  

               
      

  

 

   
   

 

x2 

B(s) C(s) 

D(s) A(s) 
y x1 x3 x 

Figure 9: Segment s  in  Kn�1  is [x,y]. Then  A(s) = [x, x1], B(s) = 
(x1, x2), C(s) = (x2, x3), D(s) = [x3, y], and E(s) = {x2}. 

closed at that endpoint). Thus, e.g., 1 ∈ A([0, 1]) and 2 ∈ D([0, 1]). Note that 
3 3 

for each segment s this leaves one point still unclassifed—namely, the midpoint 
of s which becomes in the next stage of construction, the apex of the equilateral 
triangle (in Figure 9, the point x2). For simplicity, we let this one point constitute 
a new singleton set E(s). 

These defnitions allow us to construct stages of labeling in a natural way. Fix 
x [0, 1], n N and let sx,n�1 be the line segment in Kn�1 containing fn�1(x). We ∈ 
let: 

⎧ ln�1(x) ∗ 0 if fn(x) ∈ B(sx,n�1) 
ln(x) = ln�1(x) ∗ 1 if fn(x) ∈ C(sx,n�1) 

⎨
⎩

ln�1(x) otherwise 
Stages of labeling correspond to stages of Koch construction. If in the n-th 

stage of Koch construction x “stays in the same place” (i.e., fn(x) = fn�1(x)), 
then the label for x at stage n remains what it was in the previous stage (i.e., 
ln(x)= ln�1(x)). If on the other hand x gets “pushed up” to a side of an equilateral 
triangle introduced at stage n, then the new label ln(x)appends a 0or 1 to the old 
label ln�1(x) (depending on which side of the equilateral triangle—i.e., “left” or 
“right”.) 

Note that some elements in [0, 1]“stabilize” over successive labelings and some 
do not. More precisely, some but not all points x ∈[0, 1] satisfy the following 
condition: 

(∗)∃N ∈ N such that ∀n ≥ N, ln(x) = lN (x) 
If every point in the interval stabilized, we could happily restrict our attention to 
the infnite binary tree T2 (without limits) and use this tree to label points in the 
real interval [0, 1]. The fact that many—in fact uncountably many—points do not 
stabilize isour motivation for passing from T2to T+. Our fnal labeling function, l, 2 
agrees with stage-wise labeling functions on points that stabilize, but assigns limit 
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nodes of T+ to all points that do not stabilize. We defne the function l : [0, 1] → 2 
T+

2 as follows: 
( lN (x) if   x  satisfes  ( ) l(x) = ∗ 

t otherwise 

where t is the unique countable sequence over {0,1} that has ln(x) as initial seg-
ment foreach n N. ∈ 

Totakeasimpleexample, it isclearthatthepoint 1stabilizesandtherefore l(1) 3 
is a fnite string. Indeed, l( 1 ) = , as ln( 1 ) = l0( 1 ) = for all n N. Note that 3 h·i 3 h·i 
successive labeling functions, ln, are monotonic in the following sense: For any ∈ 
x ∈ [0, 1], if m < n, then ln(x) is an descendant of ln(x) (i.e., ln(x) = lm(x) ∗ t 
for some t ∈ Σ+). Moreover, l(x) is a descendant of ln(x) for all n ∈ N (i.e., 
l(x) = ln(x) ∗ tn for some tn ∈ Σ+). 

Theorem 2.5.2. l : [0, 1] → T2 
+ is a full, interior map 

The proof of this theorem is given in the section below. Westate as corollaries 
thetwomainresultsofthischapter: 

Corollary 2.5.3. S4 is complete for the class of models over the real interval [0, 1]. 

Proof. Immediate from Fact 2.4.8, Theorem 2.4.18, and Theorem 2.5.2. 

Corollary 2.5.4. S4 is complete for the class of models over Koch curve, K. 

Proof. By the map l ◦ f �1 : K → T+
2 . That thecomposition is full-interior is 

immediate from Claim 2.5.1and Corollary 2.5.3. 

2.5.2 Completeness via the Koch curve 

In this section, we prove Theorem 2.5.2. 

Proof. As before, for any fnite node s ∈ T+ , let Bs be the basic open set {s∗t | t ∈ 2 

Σ+}. 

1. (Continuous) Let U be a basic open set in T+. Then U = Bs for some fnite 2 
node s ∈ T+. Suppose x ∈ l�1(Bs). We show there is an open set O ⊆ 2 
[0, 1] such that x ∈ O ⊆ l�1(Bs). By construction of the functions ln, there 
exists a least N  N such that lN(x) = s. Moreover, at stage N all points ∈ 
belonging to some open interval O which contains x are labeled by s—i.e., 
for each y ∈ O, lN(y) = s. By monotonicity of the labeling functions, l(y) 
is a descendant of lN(y)(= s) for each y ∈ O. So O ⊆ l�1(Bs). Moreover, 
x∈ OandO isopen,asneeded. 
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2. (Open) We introduce the notion of a maximal, uniformly labeled (MUL) 
interval under ln.  In particular, I ⊆ [0, 1] is a MUL interval under ln if 
for all x, y I, ln(x) = ln(y), and there does not exist a strictly bigger ∈ 
interval I 0 ⊃ I with this property. With slight abuse of notation, where I 
is a MUL interval under ln, all of whose points are labeled by some node 
t, we will write ln(I) = t.  Note that for each point x  ∈[0, 1], x belongs 
to successively smaller MUL intervals under the fnite labeling functions, 
l1, l2, l3, . . . . (Thus, e.g., for x = 1/4, x belongs to the MUL interval [0, 1] 3 
under l1, then to the MUL interval [2 , 1] under l2, etc.) Letting Ix,n be the 9  3 
MUL interval under ln containing x, we have that length (Ix,n) →n→∞ 0. 
It follows that if O ⊆ [0, 1] is open, and x ∈ O, then for large enough n, 
Ix,n  ⊆ O. 
Now let O ⊆ [0, 1] be open, and suppose s ∈ l(O)—that is, l(x) = s for 
some x ∈ O. We need to show that there exists an open set U ⊆ T+ such 2 
that s ∈ U ⊆ l(O). 
If (case 1) s is fnite, then for large enough n, Ix,n ⊆ O and ln(Ix,n) = s.  
We claim that l(Ix,n) = Bs.  Since Ix,n     ⊆O, we have s ∈   Bs     l(O), and  
Bs is open, as needed. (Proof of the claim: By monotonicity of the labeling ⊆ 
functions, we know that l(Ix,n)  ⊆ Bs.  The diffcult part is to show that 
Bs    ⊆l(Ix,n)—in particular, that every limit node in Bs labels some point 
in Ix,n under l. Weprovethispart,andleavethecaseforfnitenodesto the 
reader. Let r be a limit node in Bs. Then r = s ∗ r0 for some countably 

0 Σ+ 0 0 0 0 0 infnite string r ∈ . We write r = (r1 , r2 , r3 , . . . ). We need to fnd x 
Ix,n such that l(x0) = r. It will be useful for us to label different segments 
of an MUL interval, I, by A(I), B(I), C(I), and D(I), just as we labeled 
different parts of the line segments in Kn above.11 We now defne a sequence 
of points xn ∈ [0, 1], recursively. For the base step: If r1 

0 = 0, then let x1 be 
some point in B(Ix,n); if r1 

0 = 1, then let x1 be some point in C(Ix,n). For 
the recursive step, assume we have defned the points x1, . . . , xk. Then if 
rk 

0 
+1 = 0, let xk+1 be some point in B(Ixk,n+k); if rk 

0 
+1 = 1, then let xk+1 

be some point in C(Ixk,n+k). By construction, for each k ∈ N, we have 
xk+1, xk  ∈ Ixk,n+k.  So |xk+1 �xk| ≤ length (Ixk,n+k) →k→∞ 0.  Thus 
the sequence {xk} is Cauchy, hence convergent. We let x0 = limk→∞ xk. 

11Thus, if I = (i1, i2), we have: 

B(I) = (i1 + 1 (i2 �i1), i1 + i2 �i1 ) 3 2 

C(I) = (i1 + i2 �i1 , i2 �1 (i2 �i1)) 2 3 
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0 0 It is then clear by construction that x ∈ Ix,n and l(x0) = s ∗ r = r, as 
needed.) 
If (case 2) s is a limit node, then ln(Ix,n) is a fnite ancestor of s, for each 
n    ∈ N. We pick n large enough so that Ix,n O and let t = ln(Ix,n). Then, 
as in the previous case, l(Ix,n) = Bt. Moreover, s ∈ Bt by monotonicity of 
the labeling functions. Since Ix,n    ⊆ O, we have s  ∈ Bt    l(O), and Bt is 
open, as needed. ⊆ 

3. (Surjective) Weknow already that for some x ∈ [0, 1], l(x) = , which 
is the root of T+ (pick, e.g., x = 1). Moreover, the entire interval [0, 1] is 2 3 h 
open. So by the fact that l is open, l[0, 1] is open, and contains the root of 
T+. Since every node in T+ is a descendant of the root, it follows that l is 

2 2 
surjective. 

This completes the proof of the theorem. 
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Chapter 3 

Completenessof S4 forthe 
Lebesgue Measure Algebra 

This chapter explores a new, probabilistic semantics for the basic propositional 
modal language. In a series of recent talks, Dana Scott showed that the standard 
propositional modal language can be interpreted probabilistically, by assigning for-
mulas to elements of the Lebesgue measure algebra, or algebra of Borel subsets of 
[0,1] modulo sets of measure zero. In this semantics, formulas are not simply true 
or false in a given model, but acquire a probability value between 0 and 1, corre-
sponding to the measure of the element of the algebra to which they are assigned. 
We prove completeness of S4 for Scott’s semantics (formally, that S4 is complete 
for the Lebesgue measure algebra). Several interesting corollaries follow from the 
proof of this result. First, any non-theorem of S4 can be refuted at each point in 
a subset of the real interval [0, 1] of measure arbitrarily close to 1. Second, intu-
itionistic propositional logic (IPC) is complete for the subframe of openelements 
in the Lebesgue measure algebra, or elements that have an open representative. 
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3.1 Introduction 
1 We saw, in the previous chapter, that modal languages can be interpreted in topo-
logical spaces, and that the modal logic S4 characterizes any dense-in-itself metric 
space—in particular, the real line, R. The real line, however, can be investigated 
not just from a topological point of view, but from a measure-theoretic point of 
view. Here, the probability measure we have in mind is the usual Lebesgue mea-
sure on the reals. In the last several years Dana Scott introduced a new probabilistic 
or measure-based semantics for S4, which is built around Lebesgue measure on the 
reals. 

Scott’s semantics is essentially algebraic: formulas are interpreted in the Lebesgue 
measure algebra, or the σ-algebra of Borel subsets of the real interval [0,1], mod-
ulo sets of measure zero (henceforth, “null sets”). We denote this algebra by M . 
Thus elements ofM  are equivalence classes of Borel sets. In Scott’s semantics, 
each propositional variable is assigned to an arbitrary element of . Conjunctions, M 
disjunctions and negations are interpreted as meets, joins and complements in the 
algebra, respectively. In order to interpret the S4 ‘D’-modality, we add to the al-
gebra an interior operator (defned below), which we construct from the collection 
of open elements in the algebra, or elements that have an open representative. Un-
like the Kripke or topological semantics, there is no notion here of truth atapoint 
(or at a “world”). Indeed, singleton sets—sets consisting of a single point—have 
measure zero, and so “disappear” in the Lebesgue measurealgebra. 

The introduction of a new semantics brings with it familiar questions. Is the 
set of validities in the Lebesgue measure algebra axiomatizable? If so, is it char-
acterized by any known modal logic? In particular, does the set of validities in the 
measure algebra coincide with the theorems of S4 (i.e., is S4 sound and complete 
for Scott’s measure-based semantics)? Such questions belong to a broader family 
of questions that parallel, in some sense, the questions that we are accustomed to 
ask about Tarski’s topological semantics. Do different measure algebras give rise to 
different modal logics? To what extent can modal languages describe, discriminate 
between, and help us to reason about different measure structures? 

Inthischapter,weaddressthequestionofcompletenessforScott’ssemantics. 
Our main result is that S4 is complete for the Lebesgue measure algebra. Two 

important corollaries follow from the proof of this result. First, any non-theoremof 
S4 can be refuted at each point in a subset of the real interval, [0, 1], of measure 

1A versionofthis paperwaspublishedinJournalofPhilosophicalLogic(see(22)). Sincethen 
Ithoughtofaneasierwaytogoaboutthemainproof,andsopartsof thecurrentversionarechanged 
from the published version. This easier way is inspired by the main construction in (38). I would 
like to thank the publishers of the Journal of Philosophical Logic for granting me the permission to 
reproduce the published work here. 
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arbitrarily close to 1. Second, intuitionistic propositional logic (IPC) is complete 
for the subframe of ‘open’ elements in the Lebesgue measure algebra, or elements 
with an open representative set. 

3.2 Topologicalandalgebraicsemanticsfor S4 

Let the propositional modal language L consist of a countable set, P = {Pi | 
for all i ∈ N}, of propositional variables and be closed under binary connectives 
→, ∨, ∧, ↔ and unary operators ¬, D, 3. 
Defnition 3.2.1. The modal logic S4 in the language L consists of some complete 
axiomatization  of  classical propositional  logic PL, some  complete  axiomatization 
of the minimal normal modal logic K, say the axiom: 

K : D(φ → ψ) → (Dφ → Dψ) 
and the rule: 

N : ` φ ⇒ ` Dφ 

and fnally the two special S4 axioms: 

4 : DP → DDP 
T : DP → P 

WeareinterestedinalgebraicmodelsofthemodalsystemS4, ortopological 
Boolean algebras. 

Defnition 3.2.2. A topological Boolean algebra (henceforth TBA) is a Boolean 
algebra with an interior operator, I, satisfying the following properties: 

(l1) Ia ≤ a 
(l2) I(a ∧ b) = Ia ∧ Ib 
(l3) IIa = Ia 
(l4) I(1) = 1 

A complete TBA is a TBA in which every collection of elements has a supre-
mum (and infmum). 

Example 3.2.3. (Topological feld of sets) The set of subsets P (X) of a topological 
space X with set-theoretic meets, joins and complements, and where Ia denotes 
the (topological) interior of a, is a complete TBA and we denote it by B(X). More 
generally,  any  Boolean  algebra, A   ,  of  subsets  of  a  topological  space X  that  is 
closed  under topological  interiors  is a TBA  (A   need  not  contain  all  subsets  of 
X). We call any such algebra a topological feld of sets. Note that we reserve the 
notation B(X) for the topological Boolean algebra generated by all subsets of X. 
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Defnition 3.2.4. An algebraic model of S4 is a pair, hA, V i, where A is a topo-
logical Boolean algebra, and V : P → A is a valuation function, assigning to each 
propositional variable some element of the algebra, A. 

We would like to extend the valuation function, V , to the set of all formulas in 
L, and we do so by the following recursive clauses. For any formulas φ and ψ, let: 

V (φ ∨ ψ) = V (φ) ∨ V (ψ) 
V (¬φ) = �V (φ) (3.1) 

V (Dφ) = I(V (φ)) 

where symbols on the RHS denote (in order) the algebraic join, complement, and 
interior. (Theremainingbinaryconnectives { &, →, ↔} andunaryoperator { 3 
are defned in terms of the above in the usual way.) } 

Let M = hA,V i be an algebraic model. We say a formula φ is satisfed in M 
(M = φ) iff V (φ) = 1A (the top element in the algebra). We say φ is satisfed in 

A ( A | =φ) iff φ is satisfed in everymodel M defnedover the algebra A . Finally, 
for any class C of TBA’s, φ is satisfed in C (=C φ) iff φ is satisfed in every TBA 

2 in C. 
We now defne completeness in the usual way: A logic S is complete for a class, 

C, of TBA’s if every formula that is satisfed in C is provable in S. In symbols, 

|=C  φ ⇒ `S φ 

An equivalent formulation will be more useful in what follows: S is complete for 
C if any non-theorem of S is refuted in C. In symbols, 

0S φ ⇒ |=C  φ 

Note that if is a topological feld of sets, it makes sense to talk about truth ata A 
point (much like truth at a world in Kripke semantics for the standard propositional 
modal language). For any formula φ, valuation V : →P  B(X), and point x  X, 
we cansaythat φ is true at x if 

x ∈ V (φ) 
This ternary relation between a valuation, formula and point in the topological 
space has no place in the general algebraic semantics—where need not be a A 
topological feld of sets—and, in particular, has no analog when it comes to the 
Lebesguemeasure algebra,aswewill seebelow. 

2This semantics can be generalized by defning a set of designated elements, DA, of A and letting 
satisfaction in a model M =hA,V i be defned by: V (φ) ∈ DA. The defnition used in thischapter 
is the special case where DA= {1A}. 
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Theorem 3.2.5 (Tarski’s completness theorem). The modal logic S4 is sound and 
complete for: 

(i) The class of all topological spaces (i.e., {B(X) | X is a topological space }). 

(ii) The class of all fnite topological spaces (i.e., {B(X) | X is a fnite topological space }). 

(iii) Any dense-in-itself metric space (i.e.,  B(X) for  any  dense-in-itself  metric 
space, X). 

Proof. The theorem was proved by McKinsey and Tarski in 1944 in (27). 

Defnition 3.2.6. A S4 Kripke frame is a pair h U, R i , where U is a set (of ‘worlds’) 
and R is a refexive, transitive binary relation on U . A rooted S4 Kripke frame is 
a triple hU, R, w0i, where U and R are as above, w0 ∈ U , and w0Rw for each 
w ∈ U . We say that a (rooted) Kripke frame is fnite if U is a fnite set.3 

Defnition 3.2.7. Let X be a topological space. Then X is Alexandroff if the 
collection of open sets in X is closed under arbitrary  intersections. 

It iswell-knownthatS4 Kripkeframesare just Alexandroffspaces, andvice 
versa. Indeed, let h U,R i be a S4 Kripke frame, and say that a set U0 U is open 
if it is closed under the binary relation R. The collection of open sets so defned ⊆ 
contains the empty set, the entire space U, and is closedunder arbitrary unions and 
intersections. Thus the collection of open sets defnes a topology on T U . Conversely, 
if X is an Alexandroff space, then for any x ∈ X, the set Ux = { O open | x 
O }is an open set. Weput xRy iff y Ux.Thereadercanverifythat∈Risrefexive 
andtransitive. It followsthat X,R isa S4 Kripkeframe. h i 

Notice that any fnite topology is Alexandroff. (There are only fnitely many 
points in the space, so only fnitely many open subsets.) Thus the collection of 
fnite topological spaces is just the collection of fnite S4 Kripke frames. We can 
now state Theorem 3.2.5 (ii) as follows: S4 is complete for the class of all fnite 
S4 Kripke frames. In fact, more is true: S4 is complete for the class of all rooted 
fnite Kripke frames.  That is to say, any non-theorem, α, of S4 can be refuted 
at the root of a fnite Kripke frame. (We do not reprove this classic result here. 
To understand it, though, think about what happens if we simply delete from a 
(non-rooted) Kripke frame every node not related under R to the world at which 
α is refuted.) In the fnal section of this chapter, we will appeal to this stronger 
completeness result. 

3This somewhat non-standard defnition of Kripke frames is meant to highlight frames as topo-
logical spaces. On a more standard presentation, a Kripke frame is what I call here a rooted Kripke 
frame. 
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3.3 The Lebesgue measure algebra 

In this section we defne our central object of study: the measure algebra, M . 
Weprovethat M is a complete Boolean algebra, and defne an open sublattice in 
M . Wethen show that the sublattice of open elements forms a complete Heyting 
algebra. 

Defnition 3.3.1. Let A be a Boolean algebra. We  say that a non-empty subset 
I ⊆ A is an ideal if 

1. For all a, b ∈ I, a ∨ b ∈ I 

2. If a ∈ I and b ≤ a, then b ∈ I 

If I is closed under countable suprema, we say I is a σ-ideal. 

We can construct new Boolean algebras from existing ones by quotienting by 
an ideal. If A is a Boolean algebra and I ⊆ A is an ideal, we defne the correspon-
dence ∼ on A by: 

x ∼ y iff (x 4 y) ∈ I 
where 4 denotes symmetric difference.4 Letting A/I be the set of equivalence 
classes under ∼, and letting |x| be the equivalence class corresponding to x ∈ A, 
theoperations∨,∧and�onA/Iaredefnedintheobviousway: 

|x| ∨ |y| =|x ∨ y| 
|x| ∧�|y| =|x ∧ y| (3.2) 

�|x| =| �x| 
It is easy to verify that A/I is a Boolean algebra with top and bottom elements 

|1A| and |0A|, respectively. From the defnitions of ∨� we can reconstruct and ∧�
the lattice order ≤ as follows. For any |x|, |y| ∈ A/I, 

|x| ≤ |y| iff |x| ∧ |y| = |x| 

Lemma 3.3.2. Let A be a Boolean Algebra and I an ideal in A. Then for any 
elements a,b in the quotient algebra A/I, the following are equivalent: 

(i) a ≤b 
4Note that differences and symmetric differences are defned in any Boolean algebra, not just in 

felds of sets. In particular, x �y is defned as x ∧ �y (where �y is the Boolean complement of y) 
and x 4 y is defned as (x �y) ∨ (y �x). 
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(ii) For any representatives A of a, and B of b, there exists some N ∈ I with 
A ≤ B ∨ N (in the Boolean algebra, A). 

(iii) For any representative A of a, there exists a representative B of b with A ≤ B 
(in the Boolean algebra, A). 

Proof. (i) → (ii) Suppose a ≤ b and let a = |A|, b = |B|.  Then |A ∧ B| = 
|A| ∧ |B| = |A|, so A ∧ B ∼ A.  Thus A �B = A �(A ∧ B) = N for some N 
∈ I. It follows that A ≤ B ∨ N .  (ii) → (iii) This follows from the fact that B 
∨ N ∼ B for N ∈ I. (iii) → (i). If A ≤ B, then |A| ∧ |B| = |A ∧ B| = |A|, 
and a = |A| ≤ |B| = b. 

We want to add measure-structure to Boolean algebras. The simplest such 
structures are Boolean algebras carrying a fnitely additive measure. We are inter-
ested, however, in Boolean σ-algebras carrying a countably additive measure. The 
relevantdefnitionisgivenbelow. 

Defnition 3.3.3. A measure, µ, on a Boolean σ-algebra 5 , A, is a real-valued, non-
negative function µ on A, with µ(0A) = 0, that satisfes countable additivity:    If 
{Fn}n∈N is a countable collection of elements in A with Fn ∧ Fm  = 0A for all      n, 
m ∈ N, then _ 

µ( Fn) = µ(Fn) 
X n∈N n∈N 

We say that a measure, µ, on a Boolean σ-algebra, A, is normalized if µ(1A) = 
1. We say that µ is positive if µ(a) = 0 iff a = 0A. 

Defnition 3.3.4. (Halmos) A measure algebra is a Boolean σ-algebra, A, together 
with a positive, normalized measure, µ, on A. 

Fact 3.3.5. Let µ be a normalized measure on a Boolean σ-algebra, A, and let U 
be the set of elements a ∈ A with µ(a) = 0. Then, 

(i) U is a σ-ideal in A 

(ii) The quotient A/U is a Boolean σ-algebra. 

(iii) There exists a unique measure ν on A/U defned by 

ν(|a|) = µ(a) 

Moreover, ν is positive and normalized. 
5A Boolean σ-algebra is a Boolean algebra that is closed under countable joins (and meets). 
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Proof. (i) If a ≤ b, and µ(b) = 0, we write b = a ∨ (b �a). But then µ(a) ≤ µ(b), 
by additivity of µ, so µ(a) = 0. If { an | n  ∈N }is a countable collection of 
elements in A with µ(an) 0 for all n ∈ N , then bycountable subadditivity of = W P 
µ,  µ( n an) ≤ nµ(an) = 0. (ii) We need to show that the quotient algebra 
A/U is closed under countable joins. Let {an | n ∈ N}Wbe a collection of elements 
in W A/U , with an = |An| for each n ∈ N . We claim n an = | 

W 
n An| . Clearly 

| An| is an upper bound on {an | n ∈ N}. If b = |B| is an upper bound on n {an | n ∈ N}, then |An| = an ≤ |B|, and An ≤ B ∨ Nn for some Nn ∈ U (see W W W 
Lemma 3.3.2).  But then An ≤ B ∨ Nn, and Nn ∈ U (since U is a n n n 

W 

σ-ideal). So |  An| ≤ |B| = b. (iii) the proof can be found in, e.g., (15). n 

Let Leb([0, 1]) be the σ-algebra of Lebesgue-measurable subsets of the real 
interval [0, 1], and let µ denote standard Lebesgue measure. Then µ is a normalized 
measure on Leb([0, 1]) with µ(∅) = 0. 

Defnition 3.3.6. (The Lebesgue Measure Algebra,M  ) Let Nullµ be the set of 
measure zero subsets of [0,1]. Then by Fact 3.3.5, the quotient algebra, 

Leb([0, 1])/Nullµ 

is a measure algebra. We denote this algebra by and refer to it as the Lebesgue M 
measure algebra. 

In what follows, we use uppercase letters A,B,C... to denote subsets of [0,1] 
and lower-case letters a, b, c... to denote elements of M. Equivalence classes of 
measurable sets are denoted with a bar above the relevant set (e.g., a =A, 0M=∅, 
1M = [0, 1] ). We use ‘measure (A)’ or simply ‘m(A)’ to denote the measure of 
the set A. The defnitions in (3.2) give, for any subsets Aand B of [0,1]: 

A ∨ B = A ∪ B 
A ∧ B = A ∩ B (3.3) 

�A = [0, 1] �A 

Lemma 3.3.7. For any sets A, B ∈ Leb([0, 1]), 

A ∼ B iff A ≤ B and m(A) = m(B) 

Proof. The left-to-right direction is obvious. For the right-to-left direction, sup-
pose A ≤ B and m(A) = m(B). Then A ⊆ B ∪ N for some N  ∈ Null, so 
m(A�B)=0. Furthermore, 

m(B �A) = m(B) �m(B ∩ A) = m(A) �m(B ∩ A) = m(A �B) 

and we have m(B �A) = 0. Thus A 4 B ∈ Null and A ∼ B. 
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Proposition 3.3.8. M is a complete Boolean algebra 

Proof. 6 We show that any well-ordered subset S of M hasaleastupperbound. 
Theproof isbytransfnite inductionontheordertypeofS. Let S haveordertype 
α and write S = pγ γ < α . For β < α, let qβ = sup pγ γ < β (existence  { | } { | 
follows from the inductive hypothesis). If α is a limit ordinal then qβ  β < α } { | 
isanon-decreasingsequenceofelements in and m(qβ)  β < α is a non-M { | } } 
decreasing sequence of reals. But note that there are only countably many distinct 
reals in this sequence (for each“jump” between two reals in the sequence, there 
is a distinct rational number.) It follows from Lemma 3.3.7 that there are only 
countably many distinct elements ‘qβ’ in the sequence  qβ  β < α . But is { | } M 
closed under countable suprema (see Fact 3.3.5 (ii)), so sup S = sup q| β β < α { 
exists. } 

By contrast, Leb([0, 1]) is not a complete Boolean algebra. If, e.g., S is a non-
measurable subset of [0, 1], then the collection    {{ x  } | x ∈S has no supremum 
in Leb([0, 1]). Note that the Lebesgue measure, µ, on Leb([0, 1]) is not a positive } 
measure: any non-empty countable set has measure zero, but is not equal to the 
bottom element, of the algebra. Indeed, it is proved in (15) that every (positive, ∅ 
normalized) measure algebra is complete. 

The Lebesgue measure algebra, is well-known, but now we would like to M 
turn into a topological Boolean algebra. To do so, we must defne an interior M 
operator on the algebra. Wedo this by frst defning a collection of ‘open’ elements 
in M. 

Defnition 3.3.9. We say an element a ∈ M is open if some representative A of a 
is an open subset of [0, 1]. We denote the set of open elements in Mby G. 

The next proposition states that not all elements of M are open. 

Proposition 3.3.10. M6= G 

Proof. The proof is postponed until §3.5.1, where we introduce thick Cantor sets. 

In the next proposition we show that open elements in form a complete M 
Heyting algebra. Recall that a complete Heyting algebra is a complete lattice that 
satisfes the following infnite distributive law: For any x ∈ A and {ai | i ∈ I} ⊆ 
A , 

6This proof was suggested to me by Dana Scott. In fact, the more general claim that every 
(positive, normalized) measure algebra is complete is proved in (15). The proof procedes by showing 
thatanalgebra iscomplete iff itsatisfes thecountablechaincondition,andthatanymeasurealgebra 
so defned satisfes this condition. 
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_ 
x ∧ ai = (x ∧ ai) (3.4) 

_ i∈I i∈I 

Proposition 3.3.11. G is a complete Heyting algebra.7 

Proof. We need to show that G is a complete lattice. Let {ai| i ∈ I} ⊆ G, and let 
ai = Ai for each i ∈ I, with Aianopenrepresentativeofai. Let { (pn,qn) n | ∈ N } 
be the collection of open rational intervals (open intervals with rational endpoints) W S 
containedinsome(orother)Ai. Weclaimthat i ai = (pn,qn). ClearlyRHS n
is an upper bound on { ai |i   ∈ I }(thisfollowsfromthefactthateachopenset,Ai 
is equal to the union of rational intervals contained in it). Suppose b = B is an 
upper bound on {ai | i ∈ I} with b ∈ G. 8 For each i ∈ I, choose Ni ∈ Null 
such that Ai ⊆ B ∪ Ni. For each n ∈ N, choose i(n) such that (pn, qn) ⊆ Ai(n). S S S S 
We have: (pn, qn) ⊆ Ai(n) ⊆ B ∪ Ni(n), where Ni(n) ∈ Null. n n n n 

S 
≤ So n(pn, qn) B = b, proving the claim. This shows that every collection of 

G elements in has a supremum. What about infma? Consider now the collection 
{bj | j ∈ J} G {ai | i ∈ I} of of lower bounds 9 in on .  This collection has a V 

supremum, b. We claim that b = i ai. The proof is similar to the previous and is 
lefttothereader. W S 

Note that the proof shows that i ai = i Ai, where Ai is any open represen-
tative of ai (for i ∈I). We use this fact to show that satisfes the distributive law 
(3.4),asfollows.Letx=X, withXanopenrepresentative.Then, 

_ [ 
x ∧ ai =X ∧ Ai 

i i 
[ 

=X ∩ Ai 
i 

[ 
= (X ∩ Ai) 

i _ 
= (X ∩ Ai) 

i _ 
= (x∧ai) 

i 
7In general, infma in  and do not coincide. Example: For each n  N, let Kn denote the G M 

set of points belonging to “remaining intervals” at the n-th stage of construction of K (defned in ∈ 
§3.5.1). Then Kn ∈ G for each n ∈ N, but infM{Kn | n ∈ N} = K, and infG{Kn | n ∈ N} = ∅ 
(where infM and infG denote infma in Mand G, respectively). 

8The reader can verify that the condition b ∈ G does no work in the proof. Indeed, this shows 
thatsupremainMandGcoincide.Thisisnotthecaseforinfma(seenote. 6). 

9It is crucial that we take lower bounds in G and not in the larger M. In general, the set of lower 
boundsinGandMdonotcoincide!Seenote6. 
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With our defnition of open elements in hand, we can now equip M with an 
interioroperatorIdefnedasfollows. Forany a∈ M, 

Ia = sup {b open | b ≤ a} (3.5) 

Proposition 3.3.12. I is an interior operator. 

Proof. Let a, b ∈ M. Axiom (l1) is obvious. For (l2), note that I(a ∧ b) ≤ I(a) 
and I(a ∧ b) ≤ I(b). So I(a ∧ b) ≤ Ia ∧ Ib. For the reverse inequality, note that 
Ia ≤ a and Ib ≤ b. Thus Ia ∧ Ib ≤ a ∧ b. Moreover, (Ia ∧ Ib) ∈ G. It follows 
that Ia ∧ Ib ≤ sup {c ∈ G | c ≤ a ∧ b} = I(a ∧ b). For (l3) note that Ia ∈ G, 
and Ia ≤ Ia, giving Ia ≤ sup {c ∈ G | c ≤ Ia}. By (l1) we also have IIa ≤ Ia. 
Finally for (l4), note that [0, 1] ∈ G. Thus I [0, 1] = sup {c ∈ G | c ≤ [0, 1]} = 
[0, 1] . 

Remark 3.3.13. At this point, the reader may be wondering: Why not defne the 
operator I via the topological interior on underlying sets (just as Boolean opera-
tions on M are defned via set-theoretic operations on underlying sets): 

I(A) = Int(A) (*) 

(where ‘Int(A)’ denotes the topological interior of the set A ⊆[0, 1]). A simple 
example shows that defnition (*) is not correct (i.e.,  not well-defned).  Let A = 
[0, 1]�Q. Then A ∼ [0, 1]. But Int (A) = ∅, and Int ([0, 1]) = [0, 1]. So according to 
(*), [0,1] = I(A) = ∅. 10) 

Corollary 3.3.14. The Measure Algebra, M, with unary operator I is a TBA. 

Proof. Immediate from Proposition 4.8 and Proposition 3.3.12. 

In general, there is no easy way to calculate the supremum of an uncountable 
collection of elements in , as indicated by the non-constructive proof of Proposi-M 
tion 4.8. However, when we calculate Ia, we take the supremum of a collection of 
open elements, and arbitrary joins of open elements reduce to countable joins, and 
so are well-behaved (see proof of Proposition 3.3.11). The following proposition 
shows how to calculate the interior operator in M in terms of underlying sets. 

10Indeed, the example shows that the interior operator in the topological felds of sets Leb([0,1]) 
and B([0, 1]) behaves quite differently from the interior operator in M. This is crucial in what 
follows, where, despite this difference, we aim to transfer valuations over B([0,1]) to M. 
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Proposition 3.3.15. Let a ∈ M and let  { (pn, qn) | n ∈ N } be an enumeration of 
open rational intervals (open intervals with rational endpoints) contained in some 

S 
(or other) representative A of a. Then, Ia = (pn, qn) n 

Proof. The proof is similar to the proof of Proposition 3.3.11. We need to show 
S 

{ ∈ G | ≤ } ∈ G that    (pn, qn) = sup  c  c a .  Suppose that c and c  a.  Then n ≤ ⊆ c = C for some open representative C and C A for some representative A 
of a (see Lemma 3.3.2). Since C is open, C can be written as the union of open 
rational intervals contained in C. Each such interval is also contained in A, so 
C ⊆ 

S 
n(pn, qn), and c ≤ S 

S 
n(pn, qn). This shows n(pn, qn) is an upper bound 

on {c ∈ G | c ≤ a}. Now suppose that b = B is an upper bound on {c ∈ G | c ≤ a}. 
Then, for each n ∈ N, (pn,qn) ≤ b, and (pn,qn) ⊆ B ∪ Nn for some Nn ∈ Null. S S S S 
So (pn,qn) ⊆ B ∪ Nn and (pn, qn)≤ b . This showsthat (pn, qn) n n n n 
the least upper bound on {c ∈ G |c ≤ a}. is 

Westatewithoutproofanobviouscorollarywhichrepresentstheinterior in M 
intermsofopensetsratherthanrationalintervals: 

Corollary 3.3.16. For any a ∈ M, 
[ 

Ia = {O open | O ⊆ A for some representative A of a} 

Note from Corollary 3.3.16 that Ia ∈ G for any a ∈ M. Thus, as expected, 
boxed formulas (i.e., formulas of the form Dφ for some φ ∈ L) are evaluated to 
openelementsinM. 

3.4 Invariance maps 

Our aim in what follows will be to transfer completeness of S4 from fnite topolo-
gies (= fnite S4 Kripke frames) to the measure algebra, , by means of truth-M 
preserving maps. In this section, then, we study truth-preserving maps between 
topological Boolean algebras. In the special case where we deal with topological 
felds of sets, the key notion is that of an interior, surjective map. The key no-
tion in the more general algebraic semantics is that of an embedding. The relevant 
defnitionsaregivenbelow. 

Defnition 3.4.1. Let    1 and    2 be TBA’s. A function π : 2 is a homo-A A 1 A  → A 
morphism if it preserves Boolean operations and the interior operator: 
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π(a ∨ b) = π(a) ∨ π(b) 
π(a∧ b) = π(a) ∧ π(b) 

π(�a) = �π(a) π(Ia) 
= I(π(a)) 

11We say that π : A1 → A2 is an embedding if π is an injective homomorphism. 
Finally, we say that π : A1 → A2 is an isomorphism if π is a surjective embedding. 

Lemma  3.4.2. Suppose  that A1 and A2 are  TBA’s and  that  π : A1 →  A2 is 
a homomorphism. Let V 0 : P → A1 be any valuation over A1 and defne the 
valuation V : P → A 2 by V (P ) = π V 0(P ). Then for any formula α in the 
propositional modal language, L, 

V (α) = π ◦ V 0(α) 

If π is an embedding, then (also) 

V 0(α) = 1A1 iff V (α) = 1A2 

Proof. The proof is by induction on the complexity of α. The base case is true by 
defnition of V , and we prove only the modal clause: 

V (Dφ) =I(V (φ)) 
=I(π ◦ V 0(φ)) (by inductive hypothesis) 
=π(I(V 0(φ))) (since π a homomorphism) 
=π ◦ V 0(Dφ) 

For the second part of the lemma (where π is an embedding), note that if V (α)= 
1A2, then by the previous part, π ◦ V 0(α) = 1A2. But since π is injective, V 0(α) = 
1A1. Conversely, if V 0(α) = 1A1, then V (α) = π ◦ V 0(α) = π ◦ 1A1 = 1A2. 

Let X and Y be topological spaces. Recall that a map, f : →X Y is con-
tinuous if the inverse image of every open set in Y is open in X. f is open if the 
image of any open set in X is open in Y . A map that is both open and continuous 
iscalled interior. 

Lemma 3.4.3. Let X and Y be topological spaces, and form the corresponding 
topological feld of sets B(X) and B(Y ). If g : X → Y is interior and surjective, 
then [g�1] : B(Y ) → B(X)12 is an embedding. 

11In the fnal equation, ‘I’ on the LHS is the interior operator in A 1 and ‘I’ on the RHS is the 
interior operator in A 2. Wetrust that the slight abuse of notation here will not confuse. 

12The map [g�1] is defned on B(Y ).  It takes subsets of Y to their pullbacks in X—i.e., for 
S ⊆ Y , [g�1](S) = {x ∈ X | g(x) ∈ S}. 
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Proof. Suppose S1, S2  ∈B(Y ), with S1 = 6 S2. WLOG, let y   ∈S1, y / S2. Then 
since g is surjective, there exists x  ∈ X ∈with g(x) = y. But then x   [g�1](S1) 
and x / [g�1](S2), proving that [g�1] is injective. 

We need to show that [g�1] preserves the algebraic operations. The Boolean 
operations are straightforward and we prove only the modal clause: i.e., for any 
a ∈ B(Y ), 

[g�1](Ia) = I([g�1](a)) 

By continuity of g, we know that [g�1](Ia) is open in X. Moreover, since Ia ⊆ a, 
we have [g�1](Ia) ⊆ [g�1](a). Thus [g�1](Ia) is an open subset of [g�1](a). 
To see that it is the largest such subset, suppose O ⊆ [g�1](a) is open in X. 
Then, since g is open, g(O) is an open subset of a, hence g(O) ⊆ Ia. But then 
O ⊆[g�1](Ia). 

Proposition 3.4.4. Suppose that X and Y are topological spaces and g : X → Y   
is an interior, surjective map. Let V 0 : P → B(Y ) be a valuation function and 
defne V = [g�1] ◦ V 0 . Then for every formula α of L we have: 

V (α) = [g�1] ◦ V 0(α) 

and 
V 0(α) = 1B(Y ) iff V (α) = 1B(X) 

Proof. Immediate from the previous two lemmas. 

We want to construct embeddings not just from one topological feld of sets into 
another, but from a topological feld of sets into the Lebesgue measure algebra, . M 
Such maps will allow us to transfer completeness from a given topological space, or 
class of spaces, to  M . To this end, let us defne a new, measure-theoretic property 
of maps between topological spaces. 

Defnition 3.4.5. Let X be the real interval, [0,1], let µ be standard Lebesgue 
measure on X, and let Y be a topological space. We say that a function g : X → Y 
has the M-property if for every subset S ⊆ Y , 

(i) g�1(S) is Lebesgue-measurable. 

�1 (ii) For any open set O ⊆ X, if g (S) ∩ O 6= ∅, then µ(g �1(S) ∩ O) > 0. 

Proposition 3.4.6. Let X, µ, and Y be as in Defnition 3.4.5. Suppose g : X → Y 
is an interior, surjective map, and that g satisfes the M-property. Then the function 
Φ : B(Y ) → M defned by: 

Φ(S) = g�1(S) 
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(for any S ⊆ Y ) is an embedding.13 

Proof. We need to show that Φ preserves Boolean operations, the interior operator, 
and is injective. The Boolean cases are straightforward and we leave them to the 
reader. For the interior operator, we need to show that 

Φ(I(S)) = I(Φ(S)) 

We know that: 

Φ(I(S)) =g�1(Int(S)) 
= Int(g�1(S)) (since [g�1] isahomomorphism) 
[ 

= {Oopen |O ⊆ g�1(S)} (by defnition of interior) 

I(Φ(S)) = sup {c open | c ≤ g�1(S)} 
[ 

= {Oopen |O ⊆ g�1(S) ∪ N for some N ∈ Nullµ} 

(where the last equality follows from Corollary 3.3.16). So it is suffcient to show 
that for any open set O ⊆ X, if O ⊆ g�1(S) ∪ N for some N ∈ Nullµ, then  O 
⊆ g�1(S). 

Suppose not. Then there exists O ⊆ X open such that O ⊆ g�1(S) ∪ N for 
some N ∈ Nullµ but O 6⊆ g�1(S). So there exists x ∈ O such that x ∈/ g�1(S). 
Thus x ∈ N . Now let g(x) = y ∈ Y . We know that O ∩ g�1(y) 6= ∅. And since 
g has the M-property, µ(O ∩ g�1(y)) > 0. But y ∈/ S, and O ⊆ g�1(S) ∪ N . It 
followsthat O∩g�1(y)⊆ N. Thiscontradicts thefact thatN hasmeasurezero. 
⊥ . 

It remains to show only that Φ is injective. Suppose that Φ(S1) = Φ(S2). Then 
g�1(S1) = g�1(S2).  So µ(g�1(S1) g4 �1(S2)) = 0.  But g�1(S1) g�1(S2) = 
g�1(S1 4 S2).  So µ(g�1(S1 S2)) = 0. Now it follows from the fact that g has 
the M-property that for any non-empty set ⊆S Y , we have µ(g�1(S)) > 0. (Take 
as the open set O in Defnition 3.4.5 (ii) the entire space, [0,1].) This means that 
S14S2 = ∅. So S1 = S2. 

Corollary 3.4.7. Let X, µ, Y, g, and Φ be as above. Suppose that V 0 : P →B(Y ) is 
a valuation, and defne the valuation, V = Φ V ◦0 . Then for every formula α in L 
we have: 

V (α) = Φ ◦ V 0(α) 
13Note that Φ = q g�1, where q is the restriction of the quotient map from B([0, 1]) to to ◦ M 

the set { g | ⊆ �1 is an embedding, but the (unrestricted) quotient mapis �1(S) S Y . We know that g 
not an embedding. What the proposition shows is that when we restrict the quotient map to the } 
collection of g-pullbacks of subsets of Y , then the resulting map is an embedding. 
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and 
V (α) = 1M iff V 0(α) = 1B(Y ) 

Proof. Immediate from Lemma 3.4.2 and Proposition 3.4.6. 

Remark 3.4.8. Let B be a subset of the real interval [0, 1] of measure 1 with the 
relative topology, and let Y, µ, g, and Φ be as above, except that g is now defned 
on B. Then we can still view Φ as an embedding of the algebra B(Y ) in M —even 
though, strictly speaking, these defnitions are not correct (i.e., well defned). That    
is because the measure algebra Leb([B]) \ Nullµ is isomorphic to the Lebesgue 
measure algebra,  . Thus it is suffcient, in Corollary 3.4.7, to require that g be   M 
defned only on a subset of [0,1] of measure equal to 1. This will make life simpler 
for us in the next section, where we aim to construct such a map, g. 

3.5 CompletenessofS4fortheLebesguemeasurealgebra 

We know that the logic S4 is complete for the class of fnite S4 Kripke frames (= 
fnite topologies).14 Algebraically put, S4 is complete for the class of topological 
Boolean algebras, B( ) is a fnite topology . Our aim in this section is to { F |F 
leverage this nice result toward a proof of completeness of S4 for . Our strategy } M 
will be to embed such Kripke frames in the algebra . To do this, we need to M 
construct ‘nice’ maps from the real interval [0, 1] (or, more precisely, a subset, B, 
of the interval of measure 1) to the Kripke frame, . In particular, we need to F 
construct a map, g : B  → F, that satisfes the conditions of Proposition 3.4.6. 
We begin by recalling the thick Cantor sets, which will play a crucial role in the 
construction of our map, g. 

3.5.1 Thick Cantor sets 

Recall the construction of the (normal) Cantor set. Webegin with the interval[0, 
1]. At stage n = 0 of construction, we remove the open middle third (1 , 2), 3  3 

leaving “remaining intervals” [0, 1] and [2 ,1]. At stage n = 1, we remove the 3 
open middle thirds of each of these intervals, (1 , 2) and (7 , 8), leaving remaining 9 9 9 
intervals [0, 1], [2 , 1], [2 , 7] and [8 ,1], and so on. In general, at stage n + 1 of 9 9 3 3 9 
construction, we remove the open middle thirds of each remaining interval from 
stage n. The Cantor set, C, is the set of points remaining after infnitely many 

14In the remainder of the chapter, I will use ‘fnite S4 Kripke frames’ and ‘fnite topologies’ 
interchangeably. 
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Figure 10: First fve stages of construction of the Smith-Volterra-Cantor set, K. 

stages of construction. To calculate the measure of C, we need only subtract the 
totalmeasureofintervalsremovedfromthemeasureoftheunit interval, [0,1]: 

1 2n (1)n+1 = 1 1 (2)n = 0 X X 3 3 3 — � n≥0 n≥0 

An easy argument due to Dana Scott shows that removing middle fourths, ffths, 
etc. (as opposed to middle thirds) does not affect the measure of C. Indeed, let Cn 
be the set resulting from removing open middle intervals of proportional length 
1/n at each stage of construction. After removing the frst middle interval we 
produce scaled copies of Cn on the intervals [0, n�1] and [n+1 ,1], giving, 2n 2n 

m (Cn) = 2 n �1 m (Cn) 
2n 

and m (Cn) = 0. 
We can, however, construct a set that is ‘Cantor-like’ with non-zero measure. 

The trick is to remove successively smaller portions of remaining intervals. The 
set we end up with is sometimes called a ‘thick’ or ‘fat’ Cantor set. The particular 
version of it below has measure = 1/2, but this is not necessary—sets of arbitrary 
positivemeasurecanbeconstructedinsimilarfashion. 15 

Defnition 3.5.1. Begin with the interval [0, 1], and at stage n = 0 of construction, 
remove the open middle interval of length 1 , leaving remaining intervals [0, 3 ] ∪ 4 
[5 ,1]. At stage n = 1, remove open middle 1 ’s from each interval, leaving [0, 5 ]∪ 8 16 
[ 7 3 ] ∪ [ 5 25 ] ∪ [ 27 , , , 1], etc. In general, at stage n of construction, remove open 3 8 8 3 3 

middle intervals of length ( 1 )n+1 from each remaining interval. The set of points 4 
remaining after infnitely many stages of construction is the Smith-Volterra-Cantor 
set. We call it the ‘thick’ Cantor set and denote it by K . 16 (See Figures 10 and 11.) 

( 1)n+1 15To construct a thick Cantor set with measure 1 � c, remove middle intervals of length 2c4 at stage n of construction. Over the course of the construction we remove a total measure of 
2c 

P 
n≥0 2n (1)n+1 = 2c 

P (1)n+2 = 2c (1) = c. 4 n≥0 2 2 
1 Figures 10 and11 are licensed by Creative Commons. 
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Figure 11: The set K. After white intervals have been removed, the black points 
which remain make up K. 

What is the measure of K? Note that at each fnite stage n of construction 
of K, 2n intervals of length (1 )n+1 are removed, so the total measure of points 4 
removed is X X 

2n (1)n+1 = (1)n+2 = 1 
4 2 2 

n≥0 n≥0 

and m(K) = 1 �1/2 = 1/2. 

Proposition 3.5.2. Let O be an open set with K O = . Then K O has non-zero ∩ 6 ∅ 
measure. ∩ 

Proof. Let O be open and x∈  K  ∩O.  Then, since x K, x is in a remaining 
interval at each stage of construction of K. Let Rn,xdenote the remaining interval ∈ 
containing x at stage n of construction. The length of remaining intervals tends 
to zero, so for N large enough, RN,x ⊆ O.  But, by symmetry, m (K RN,x) = 
( 1)N+2 > 0. (At stage N of construction, there are 2N+1 remaining intervals and 2 
they split the measure of K equally). Thus 

m (K ∩ O) ≥ m(K ∩ RN,x) > 0 

We can construct a ‘scaled copy’ of K by starting from the interval [a, b] instead 
of [0, 1], and successively removing middle segments of length (b a)(1)2n+2. In � 2 
fact, we can carry out the construction of K on any closed, open, or half-open 
interval [a,b],(a,b),[a,b),(a,b]. If westart fromtheopen interval (a,b), there-
sulting set is not closed (compact, etc.) and hence differs in important topological 
properties from K. Nevertheless, with slight abuse of notation, we refer to all such 
constructions as ‘scaled copies’ of K. Clearly the measure of a scaled copy of K 
on any of the intervals [a,b],(a,b),[a,b),(a,b] is just 1(b a). 2 � 

We state without proof an obvious corollary to Proposition 3.5.2: 

Corollary 3.5.3. Let K∗ be a scaled copy of K. If O is open  and O ∩ K∗ is non-
empty, then O ∩ K∗ has non-zero measure. 
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We are now, fnally, in a position to prove Proposition 3.3.10, which states that 
= (see 3.3). The example is due to Dana Scott, but we give a different proof M 6 G 

here. § 

Proof of Proposition 3.3.10. We claim that K ∈/ G (and thus M =6 G). We need to 
show that for any open set O, K ry1 O. Suppose O ⊆ [0, 1] is open and O ∼ K. We 
know O ∩ K 6= ∅ (else K ⊆ O 4 K and O ry1 K). Let x ∈ O ∩ K. By the proof 
of Proposition 3.5.2, there exists N ∈ N with RN,x O (where Rn,x is, again, the 
remaining interval at stage n containing x). But at stage n +1 of construction of 
K, we remove from RN,x an open interval, I, of non-zero measure. So I ⊆ O �K 
and and K ry1 O. ⊥. 

3.5.2 Construction of a truth preservingmap 

We now construct the map g mentioned above, that will transfer completeness 
from fnite topological spaces (= fnite Kripke S4 frames) to the Lebesgue measure 
algebra. 

Let = U, R, wo  be a fnite rooted S4 Kripke frame (= fnite topology), F h 
where U = { wi 0, . . . , wm . 

Preliminary to constructing the map, g, we defne a sequence of approximating 
functions, gi (i ∈N). 

We begin by constructing g0. Recall the construction of the thick Cantor set, 
K, given above. We will denote the union of open intervals removed at the nth 
stage ofconstructionof K by On (n ≥ 0). Now weput, 

( 
ws if x On and n = s (mod m) g0(x) = 
w0 otherwise 

Note that g0 labels each point in the thick Cantor set, K, by w0, and that all 
other points belong to some open interval that is uniformly labeled under g0by 
some node (or other) in U . If I is a maximal such interval (i.e., there does not exist 
an open interval I 0 such that I ⊂I 0 and I 0 is uniformly labeled under g0), then we call 
I a ‘removed interval under g0.’ This completes our construction of g0. 

Now suppose that the function gi is defned on every point in [0,1], and that 
under gi there is some countable collection of disjoint open intervals uniformly 
labeled under gi by some node (or other) in U . Moreover, assume that each of 
these intervals, I, is maximal in the sense specifed above (i.e., there does not exist 
an open interval I 0 such that I ⊂ I 0 and I 0 is uniformly labeled under gi). We call 
these intervals the ‘removed intervals of gi.’ For each such interval, I, uniformly 
labeled by wk ∈ U, we now put Uk = {w ∈ U |wkRw} and we denote by nk 
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the cardinality of Uk. Finally, we order the elements of Uk in some way, putting 
Uk = u1{ , u2, . . . , umk . We now repeat the construction given above, on the 
interval I. That is, denoting by Onthe union of open intervals removed at stage n 
of the construction of K(I), we let, for x ∈ I: 

( 
us if x On and n = s (mod mk) gi+1(x) = (3.6) 
wk otherwise 

For all x ∈ [0,1] such that x does not belong to a removed interval of gi, we put 
gi+1(x) = gi(x). 

Note that under gi+1 there is a countable collection of maximal (in the sense 
defned above) uniformly labeled open intervals. We call these intervals the ‘re-

moved intervals of gi+1.’ This completes our construction of the maps, gi (i ∈ N). 
Note that some points x ∈ [0, 1] belong to a ‘removed interval of gi’ for each 

i ∈ N. We denote the collection of all such points by L. We denote the collection 
of all other points in [0,1] by B. Thus, the interval [0,1] is the disjoint union of L 
and B. 

For each x ∈ B, there exists i ∈ N such that 

for all j ≥ i, gj(x) = gi(x) 

Let us denote the least such i by ix. 
We are now ready to defne the function g : B → F as follows: 

g(x) = gix(x) (3.7) 

for all x ∈ B. 

3.5.3 Completeness proof 

We need to show that the map g : B  → F defned in the previous section satisfes 
the conditions of Proposition 3.4.6. In other words, we need to show that g is 
interior, surjective and satisfes the M -property. Also, we need to show that the 
measure of the set B is 1. The work of this section is devoted to that end. 

In what follows, let gi (i ∈ N), g, B and L be as defned in the previous section. 

Lemma 3.5.4. For all x ∈ [0, 1], i ∈ N, 

gi(x)Rgi+1(x) 

Proof. By construction of gi. 
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Lemma 3.5.5. Suppose x ∈ B, g(x) = w, and wRw0 . Then for any E > 0, there 
exists y ∈ B such that |x �y| < E and g(y) = w0 . 

Proof. Let x ∈ B, g(x) = w, and wRw0 . Then since x ∈ B, there exists i N 
such that for all j ≤i, x belongs to a removed interval of gj and x does not belong to ∈ 
any removed interval of gi+1. By construction, this means that ∈x K(I) for 
someremovedinterval I of gi. But then xbelongsto some remainingintervalRn,x 
at each stage n of construction of K(I), and as we know, length (Rn,x) → 0.   
It follows that for N large enough, RN,x ⊆B(x, E), where B(x, E) is the open 
interval centered at x with radius E. But now,by construction of gi+1, there exists 

0 a removed interval I 0 of gi+1, with I 0 ⊆ RN,x and gi+1(I 0) = w . (To see this, 
consider all the intervals removed during construction of the scaled thick Cantor 
set K(I) between stages N and N + m of construction.) Again, by construction 

0 of gi+2, for any y ∈ K(I 0), g(y) = w . Thus we have, 

y ∈ I 0 ⊆ RN,x ⊆ B(x, E) 

and g(y) = w0 , as desired. 

Lemma 3.5.6. µ(L) = 0. µ(B) = 1. 

Proof. Let Si be the union of removed intervals of gi (i ∈ N). Then, 

Si ⊇Si+1 

and \ 
L = Si 

i∈N 

and m(S0) = 1. It  follows that  m(L)  = limi→∞m(Si).    But  m(Si+1)  = 
1 m(Si).17 So m(Si) → 0, and m(L) = 0. Now we have m(B) = m([0, 1]) � 2 
m(L) = 1 . 

Proposition 3.5.7. g is continuous. 

Proof. Let U be an open subset of F, and suppose x ∈ g�1(U ). Then x ∈ B, so 
by construction, there is some i ∈N such that x belongs to a removed interval of gj 
for all j i, and x does not belong to a removed interval of gi+1. Let Ii,x be the ≤
removed interval of gi containing x. Then by construction of stagewise labeling 
functions, for each y ∈ Ii,x we have gi(y) = gi(x) ∈ U. It follows from Lemma 
3.5.4 that for each point y ∈ Ii,x ∩ B, g(y) ∈ U . So x ∈ Ii,x ∩ B ⊆ g�1(U). But 
Ii,x ∩ B is open in B. Thus g�1(U ) is open. 

17By construction, and since m(K(I)) = 21 m(I). 
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Proposition 3.5.8. g is open. 

Proof. Let O ⊆ B be open, and let w ∈ g(O). Then there exists x ∈ O such that 
w = g(x). Suppose wRw0. By Lemma 3.5.5, there exists y ∈ B such that y ∈ O, 
and g(y) = w0 . Thus Uw ⊆ g(O), and g(O) is open. 

Proposition 3.5.9. g is surjective. 

Proof. This follows from the fact that g is open and g ‘hits’ the root, w0, of F (i.e., 
there exists x ∈ B with g(x) = w0.) 

Proposition 3.5.10. g has the M-property. 

Proof. (i) To see that for any set S ⊆ U , g�1(S) is Lebesgue measurable, let 
w U ∈ . Note that by construction of g, g�1(w) is a countable union of scaled 
copies of thick Cantor sets, K(I). Thus g�1(w) is a countable union of Borel 
sets, hence Borel. Since S is fnite, g�1(S) is a fnite union of Borel sets, hence 
Borel. (ii) We need to show that for any open set O ⊆ [0, 1] and S ⊆ U , if 
g�1(S) ∩ O = 6 ∅, then µ(g�1(S) ∩ O) > 0. It is suffcient to prove this for the 
case where S = {w} for some w ∈ U . Thus suppose O ⊆ [0, 1] is open, and 
for some w ∈ U , g�1(w) ∩ O 6= ∅. Then there exists x ∈ g�1(w) ∩ O. Since 
x ∈ B, there exists i ∈ I such that x belongs to a removed interval of gj for all j 
≤ i, and x does not belong to a removed interval of gi+1. By construction of the 
stagewise labeling functions, x ∈ K(I) for some removed interval I of gi18, and 
for every y ∈ K(I), g(y) = g(x) = w. So K(I) ⊆ g�1(w). But since x ∈ K(I), 
we know O ∩ K(I) 6= ∅. By Corollary 3.5.3, µ(O ∩ K(I)) > 0. Now we have 
O ∩ K(I) ⊆ O ∩ g�1(w). So 

µ(O ∩ g�1(w)) ≥ µ(O ∩ K(I)) > 0 

We now defne the function Φ : B(F) → M by 

Φ(S) = g�1(S) 

for all S ⊆ F. 

Proposition 3.5.11. Φ is an embedding. 

Proof. Immediate from Proposition 3.4.6,  Proposition 3.5.7,  Proposition 3.5.8, 
Proposition 3.5.9, and Proposition 3.5.10. 

18where K(I) is, again, the scaled copy of the thick Cantor set, K, on the interval, I 
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Proposition 3.5.12. Suppose that V 0 : P B( ) is a valuation, and defne the → F 
valuation, V = Φ ◦ V 0 , over the algebra M . Then for every formula α in L we 
have: 

V (α) = Φ ◦ V 0(α) 
and 

V (α) = 1M iff V 0(α) = 1B(F) 

Proof. Immediate from Lemma 3.4.2, and Proposition 3.5.11. 

Theorem 3.5.13. S4 is complete for the Lebesgue measure algebra, M. 

Proof. Let α be a non-theorem of S4 (i.e., 6`S4 α). Then α is refuted in some 
fnite Kripke frame, F. That is, there is some algebraic model, hB(F), V 0i such 
that V 0(α) = 1B(F). We defne the algebraic model hM, V i, letting V = Φ ◦ V 0 , 
where Φ is as defned above. By Proposition 3.5.12, V (α) =6 1M, and α is refuted 
in M. We have shown that for any α in the language L, 

6`S4α ⇒  |=M α 

We close this chapter by proving two interesting corollaries of the above theo-
rem. 

We know, from Tarski’s proof of completeness of S4 for the reals, that any 
non-theorem, α, of S4 can be refuted at a point in the real interval, i.e., there 
is a valuation, V  : P   →B([0, 1]), and point x    ∈[0, 1] with x  / V (α).  The 
next corollary states that if α is a non-theorem of S4, there exists a valuation, ∈ 
V : P B→([0, 1]), that refutes α at each point in a subset of [0, 1] of measure 
arbitrarily close to 1. 

Corollary 3.5.14. Suppose α is a non-theorem of S4. Then for any E > 0, there 
exists a valuation, V : P → B([0, 1]), with µ(V (α)) < E. Likewise, for any E > 0 
there exists a valuation V ∗ : P → M, and an element s ∈ M, with m(s) < E and  
V  (α) = s ∗ 

Proof Sketch. Let α be a non-theorem of S4, and let E > 0. Then α is refuted in 
some model, M = hB(F), V 0i, where F is a fnite Kripke frame. We defne an 
embedding, Φ∗ : B(F) → M, using thick Cantor sets of measure 1 �E, but 
otherwise identical to Φ. Let K∗ be the thick Cantor set of measure 1 �E. Then 

∗ stagewise labeling functions, gi , are constructed as before (see (3.6) above) but 
using K∗ instead of K. Again, let g ∗ be the limit of stagewise labeling functions, 
gi ∗ (see (3.7) above). Now g ∗ is an interior, surjective map. We defne the valuation 
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V : P → B([0, 1]) by putting V (P ) = g ∗�1 ◦ V 0 , and by Proposition 3.4.4 we 
have, for any formula φ in the language L, V (φ) = g�1 ◦ V 0(φ). The reader can 
now verify that K∗ ⊆ g�1(V 0(¬α)) = V (¬α). It follows that µ(V (¬α)) ≥ 1 �E, 
and µ(V (α)) < E 

For the second part of the corollary, we defne the valuation V : P → M by 
V (P ) = Φ∗ ◦ V 0 . Again, Φ∗ is an embedding19 , and so for any formula φ in 
the language L we have V (φ) = Φ∗ ◦ V 0 . The reader can again verify that K∗ ≤ 
Φ∗ ◦ V 0(¬α) = V (¬α). It follows that µ(V (¬α)) ≥ 1 �E, and µ(V (α)) < 
E 2 

As a fnal corollary, we prove that Intuitionistic propositional logic (IPC) is 
complete for the frame G. Let the propositional language L0 consist of a countable 
set, P= N , of atomic variables and be closed under binaryconnectives P{ n n | ∈ } 
→ ∨ ∧ ↔ ¬ 

G ∈ G , there exists an element, x⇒ ∈ G , called 
, , , and unary operator . Recall that is a complete Heyting algebra. In 

particular, for any elements x, y     y    
the relative pseudo-complement of x with respect to y and defned by: 

sup {c ∈ G | c ∧ x ≤ y} 

Let V : P → G be a valuation assigning propositional variables to arbitrary 
elements of G. Weextend V by the following recursive clause: 

V (φ → ψ) = V (φ) ⇒ V (ψ) 

(For the remaining connectives: V is defned in the usual way on &{ , ∨}, ‘ φ’ 
abbreviates ‘φ → ⊥’ and ‘φ ↔ψ’ abbreviates ‘φ → ψ & ψ → φ’.) 

For any formula Φ ∈ L0, let T (φ) be the Gö del-Tarski translation of φ given 
inductively as follows: 

T(P) = DP for all propositional variables P 

T(⊥) = ⊥ 

T (φ ∨ ψ) = T (φ) ∨ T (ψ) 
T (φ ∧ ψ) = T (φ) ∧ T (ψ) 
T (φ → ψ) = D(T (φ) → T (ψ)) 

Gödel and Tarski showed that ` IP C α iff ` S4 T (α) for any formula α ∈ L0. 
Moreover, foranyvaluationV :P→ M,wecandefnethevaluation,VI :P→ G, 

19One has to check, here, that when we use Cantor sets of measure 1 � c, Lemma 3.5.6 still holds. 
Wedonotcarry outtherelevant calculation here,but leaveit tothereader.

20Here µ is used to denote both the standard Lebesgue measure on the reals, and the measure on 
the Lebesgue measure algebra, M. Wetrust that this does not lead to undue confusion. 
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by VI(P) = V (DP). It is easy to show that for any formula, α ∈ L0, T (α) L1 
and 

VI (α) = V (T (α)) 
21 In particular, V (T (α)) ∈ G for each α L0 (the Gödel translation of any 
formula is evaluated to an open element). 

Corollary 3.5.15. IPC is complete for G. 

Proof. Suppose 0IP C  α.  Then 0S4 T (α).  By completeness of S4 for M, there 
is a valuation V : P → M with V (T (α)) 6= [0, 1]. But letting VI be defned as 
above, we have VI (α) = V (T (α)) = [0, 1], so α is refuted under VI in G. 

21The proof is by induction on the complexity of α. 
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Chapter 4 

Probabilistic Semantics for 
Dynamic Topological Logic 

Abstract. In this chapter we extend Dana Scott’s probabilistic semantics for the 
basic propositional modal language to a more complex modal language with two 
independent modalities. In particular, we give a probabilistic semantics for basic 
dynamic topological logic. Dynamic topological logics were introduced in the 
1990’s as a way of describing dynamic space, or a topological space together with 
a continuous function acting on the space. The simplest dynamic topological logic 
is S4C, which has both the usual necessity modality, ‘D’, and a new temporal 
modality, ‘ ’. We extend Scott’s probabilistic semantics to this bimodal logic. Q 
The main result of the chapter is that S4C is complete for the Lebesgue measure 
algebra. A strengthening of this result, also proved here, is that there is a single 
probabilisticmodelinwhichallnon-theoremsofS4Carerefuted. 
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4.1 Introduction 

Kripke frames for normal modal logics, consisting of a set of possible worlds to-
gether with a binary accessibility relation, are, by now, widely familiar. But long 
before Kripke semantics became standard, Tarski showed that the propositional 
modal logic S4 can be interpreted in topological spaces. In the topological se-
mantics for S4, a topological space is fxed, and each propositional variable, P , is 
assigned to an arbitrary subset of the space: the set of points where P is true. Con-
junctions, disjunctions and negations are interpreted as set-theoretic intersections, 
unions and complements (thus, e.g., ‘φ ψ’ is true at all points in the intersection ∧ 
of the set of points where ‘φ’ is true and the set of points where ‘ψ’ is true.) The 
‘D’-modality of S4 is interpreted via the topological interior: ‘Dφ’ is true at any 
point in the topological interior of the set of points at which ‘φ’ is true. 

In this semantics, the logic S4 can be seen as describing topological spaces. In-
deed, with the topological semantics it became possible to ask not just whether S4 
is complete for the set of topological validities—formulas valid in every topologi-
cal space—but also whether S4 is complete for any given topological space. The 
culmination of Tarski’s work in this area was a very strong completeness result. 
In 1944, Tarski and McKinsey proved that S4 is complete for any dense-in-itself 
metric space. One particularly important case was the real line, R, and as the 
topological semantics received renewed interest in recent years, more streamlined 
proofs of Tarski’s result for this special case emerged in, e.g., (5), (18), (26), (29), 
and (38). 

The real line, however, can be investigated not just from a topological point of 
view, but from a measure-theoretic point of view. Here, the probability measure we 
have in mind is the usual Lebesgue measure on the reals. In the last several years 
Dana Scott introduced a new probabilistic or measure-based semantics for S4 that 
is built around Lebesgue measure on the reals and is in some ways closely related 
to Tarski’s older topological semantics. 

Scott’s semantics is essentially algebraic: formulas are interpreted in the Lebesgue 
measure algebra, or the σ-algebra of Borel subsets of the real interval [0,1], mod-
ulo sets of measure zero (henceforth, “null sets”). We denote this algebra by M . 
Thus elements of are equivalence classes of Borel sets. In Scott’s semantics, M 
each propositional variable is assigned to some element of . We say the value of M 
the propositional variable P is that element of the algebra to which P is assigned. 
Conjunctions, disjunctions and negations are interpreted as meets, joins and com-
plements in the algebra, respectively. In order to interpret the S4 ‘D’-modality, 
we add to the algebra an interior operator (defned below), which we construct 
from the collection of openelements in the algebra, or elements that havean open 
representative.UnliketheKripkeortopologicalsemantics,thereisnonotionhere 
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of truth at a point (or at a “world”). In (11) and in (22) it was shown that S4 is 
complete for the Lebesgue measure algebra.1 

The introduction of a measure-based semantics for S4 raises a host of ques-
tions that are, at this point, entirely unexplored. Among them: What about natural 
extensions of S4? Can we give a measure-based semantics not just for S4 but for 
some of its extensions that have well-known topological interpretations? 

This chapter focuses on a family of logics called dynamic topological logics. 
These logics were investigated over the last ffteen years, in an attempt to describe 
“dynamic topological systems” by means of modal logic. A dynamic topological 
system is a pair X, f , where X is a topological space and f is a continuous func-h i 
tion on X. We can think of f as moving points in X in discrete units of time. Thus 
in the frst moment in time, x is mapped to f (x), in the second moment to f (f (x)), 
and so on. The simplest dynamic topological logic is S4C. In addition to the S4 
‘D’-modality, it has a temporal modality, which we denote by ‘Q’. Intuitively,we 
understandtheformula‘QP ’ assayingthat“atthenextmomentintime,Pwillbe 
true.” Thus we put: x ∈ V (QP ) iff f (x) ∈ V (P ). In (19) and (37) it was shown 
that S4C is incomplete for the real line, R. However, in (38) it was shown that 
S4C is complete for Euclidean spaces of arbitrarily large fnite dimension, and in 
(10) it was shown that S4C is complete for R2 . 

Theaimofthischapter is togiveameasure-basedsemanticsfor thelogic S4C, 
alongthe linesofScott’ssemantics for S4. Again, formulaswillbeassignedto 

some element of the Lebesgue measure algebra, . But what about the dynam-M 
ical aspect—i.e., the interpretation of the ‘’-modality? Weshow that there isa Q 

very natural way of interpreting the ‘ Q ’-modality via operators on the algebra 
that taketheplace ofcontinuousfunctionsinthe topologicalsemantics. These M operatorscanbeviewedastransformingthealgebraindiscreteunitsoftime.Thus 

one element is sent to another in the frst instance, then to another in the second 
instance, and so on. The operators we use to interpret S4C are O-operators: ones 
that take “open” elements in the algebra to open elements (defned below). But 
there are obvious extensions of this idea: for example, to interpret the logic of 
homeomorphisms on topological spaces, one need only look at automorphisms of 

thealgebra M . 
Adopting a measure-based semantics for S4C brings with it certain advan-

tages. Not only do we reap the probabilistic features that come with Scott’s sem-
tantics for S4, but the curious dimensionalasymmetry that appears in the topolog-
ical semantics (where S4C is incomplete for Rbut complete for R2) disappears in 
the measure-based semantics. The main result of the chapter is that the logic S4C 
iscompletefor theLebesgue-measurealgebra. Astrengtheningofthisresult,also 

1The proofs were arrived at independently and at roughly the same time. 
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proved here, is that S4C is complete for a single model of the Lebesgue measure 
algebra. Due to well-known results by Oxtoby, this algebra is isomorphic to the 
algebra generated by Euclidean space of arbitrary dimension. (Indeed, as we show 
below, it is isomorphic to the reduced measure algebra generated by any separable 
metric space together with a σ-fnite, non-atomic Borel measure on the space.) In 
other words, S4C is complete for the reduced measure algebra generated by any 
Euclidean space. 

4.2 Topologicalsemanticsfor S4C 

Let the language LD,Q consist of a countable set, P = {pn | n ∈ N}, of propo-
sitional variables, and be closed under the binary connectives ∧, ∨, →, ↔, unary 
operators, ¬, D, <, and a unary modal operator Q (thus, LD,Q is the language of 
propositionalS4enrichedwithanewmodality,Q). 

Defnition 4.2.1. A dynamic topological space is a pair hX, f i, where X is a topo-
logical space and f : X → X is a continuous function on X. A dynamic topo-
logical model is a triple, hX, f, V i, where X is a topological space, f : X  → X 
is a continuous function, and V : P → P(X) is a valuation assigning to each 
propositional variable a subset of X. We say that hX, f, V i is a model over X. 

We extend V to the set of all formulas in LD,Q by  means  of  the following 
recursive clauses: 

V (φ ∨ ψ) = V (φ) ∪ V (ψ) 
V (¬φ) = X �V (φ) 
V (Dφ) = Int (V (φ)) 
V (Qφ) = f�1(V (φ)) 

where ‘Int’ denotes the topological interior. 
Let N = X, f, V  be a dynamic topological model. We say that a formula φ h i 

is satisfed at a point x  X if x   V (φ), and we write N, x = φ. We say φ is true ∈ ∈ 
in N (N = φ) if N, x = φ for each x X. We say φ is valid in X (=X φ), if for | | | ∈ 
any model N over X, we have N = φ. Finally, we say φ is topologically valid if | 
it is valid in every topological space. 

Defnition 4.2.2. The logic S4C in the language LD,Q is given by the following 
axioms: 

– the classical tautologies, 

– S4 axioms for D. 
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(A1) Q(φ ∨ ψ) ↔ (Qφ ∨ Qψ), 

(A2) (Q¬φ) ↔ (¬ Q φ), 

(A3)  QDφ → D Q φ (the axiom of continuity) 

and the rules of modus ponens and necessitation for both D and Q      . Following (19), 
we use S4C both for this axiomatization and for the set of all formulas derivable 
from the axioms by the inference rules. 

We close this section by listing the known completeness results for S4C in the 
topological semantics. 

Theorem 4.2.3. (Completeness) For any formula φ ∈LD,Q,  the  following  are 
equivalent: 
(i) S4C  φ; ` 
(ii) φ is topologically valid; 
(iii) φ is true in any fnite topological space; 
(iv) φ is valid in Rn for n ≥2. 

Proof. The equivalence of (i)-(iii) was proved by Artemov et. al. in (3). The 
equivalenceof (i)and (iv) wasproved by Duquein (10). Thiswas astrengthening 
of a result proved by Slavnov in (38). 

Theorem 4.2.4. (Incompleteness for R) There exists φ ∈ LD,Q such that φ is valid 
in R, but φ is not topologically valid. 

Proof. See (19) and (37). 

4.3 Kripke semantics for S4C 

In this section we show that the logic S4C can also be interpreted in the more 
familiar setting of Kripke frames. It is well known that the logic S4 (which does 
not include the ‘temporal’ modality, ) is interpreted in transitive, refexive Kripke Q 
frames, and that such frames just are topological spaces of a certain kind. It follows 
that the Kripke semantics for S4 is just a special case of the topological semantics 
for S4. In thissection,weshow that the logic S4C canbe interpretedintransitive, 
refexive Kripke frames with some additional ‘dynamic’ structure, and, again, that 
Kripke semantics for S4C is a special case of the more general topological seman-
tics for S4C. Henceforth, we assume that Kripke frames are both transitive and 
refexive. 
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Defnition 4.3.1. A dynamic Kripke frame is a triple hW, R, Gi where W is a set, 
R is a refexive, transitive relation on W , and G : W → W is a function that is R-
monotone in the following sense: for any u, v ∈ W , if uRv, then G(u) R G(v). 

Defnition 4.3.2. A dynamic Kripke model is a pair hF, V i where F = hW, R, Gi 
is a dynamic Kripke frame and V : P →(W ) is a valuation assigning to each 
propositional variable an arbitrary subset of W . We extend V to the set of all P 
formulas in LD,Q by the following recursive clauses: 

V (φ ∨ ψ) = V (φ) ∪ V (ψ) 
V (¬φ) = W �V (φ) 
V (Qφ) = G�1(V (φ)). 
V (Dφ) = {w ∈ W | v ∈ V (φ) for all v ∈ W such that wRv} 
Given a dynamic Kripke frame K = h W, R, G i , we can impose a topology 

on W via the accessibility relation R. We defne the open subsets of W as those 
subsets that are upward closed under R: 

(*) O ⊆ W is open iff x ∈ O and xRy implies y ∈ O 

Recall that an Alexandroff topology is a topological space in which arbitrary 
intersections of open sets are open. The reader can verify that the collection of 
open subsets of W includes the entire space, the empty set, and is closed under 
arbitrary intersections and unions. Hence, viewing h W, R i as a topological space, 
the space is Alexandroff. 

Going in the other direction, if X is an Alexandroff topology, we can defne a 
relation R on X by: 

(@) xRy iff x is a point of closure of {y} 

(Equivalently, y belongs to every open set containing x.) Clearly R is refexive. 
To see that R is transitive, suppose that xRy and yRz. Let O be an open set 
containing x. Then since x is a point of closure for y , y O. But since y is a { } 
point of closure for { }z , z  ∈ O. So x is a point of closure for  { z  and xRz. So 
far, we have shown that static Kripke frames, W, R correspond to Alexandroff } h i 
topologies. But what about the dynamical aspect? Here we invite the reader to 
verify that R-monotonicity of the function G is equivalent to continuity of G in 
the topological setting. It follows that dynamic Kripke frames are just dynamic 
Alexandroff topologies. 

In view of the fact that every fnite topology is Alexandroff (if X is fnite, 
then there are only fnitely many open subsets of X), we have shown that fnite 
topologies are just fnite Kripke frames. This result, together with Theorem 4.2.3 
(iii),givesthefollowingcompletenesstheoremforKripkesemantics: 
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 Lemma 4.3.3. For any formula φ ∈ LD,Q, the following are  equivalent: 
(i) S4C  φ; ` 
(ii) φ is true in any fnite Kripke frame (= fnite topological space). 

In what follows, it will be useful to consider not just arbitrary fnite Kripke 
frames, but frames that carry some additional structure. The notion we are after is 
that of a stratifed dynamic Kripke frame, introduced by Slavnov in (38). We recall 
his defnitions below. 

Defnition 4.3.4. Let K = hW, R, Gi be a dynamic Kripke frame. A cone in K is 
any set Uv = {w ∈ W | vRw} for some v ∈ W . We say that v is a root of Uv. 

Noteinparticularthatanycone,Uv, inK isanopensubsetofW—indeed,the 
smallest open subset containing v. 

Defnition 4.3.5. Let K  = hU, R, Gi be a fnite dynamic Kripke frame. We  say  
that K is stratifed if there is a sequence hU1, . . . , Uni S of pairwise disjoint cones 

in K with roots u1, . . . , un respectively, such that U = k Uk   ; G(uk) = uk+1 
k < n, and G is injective. We say the stratifed Kripke frame has depth n and (with for 
slight abuse of notation) we call u1 the root of the stratifed frame. 

Note that it follows from R-monotonicity of G that G(Uk) ⊆ Uk+1, for k < n. 

Defnition 4.3.6. Defne the function CD (“circle depth”) on the set of all formulas 
in LD,Q inductively, as follows. 

CD(p) = 0 for any propositional variable p; 
CD(φ ∨ ψ) = max {CD(φ), CD(ψ)}; 
CD(¬φ) = CD(φ); 
CD(Dφ) = CD(φ); 
CD(Qφ) = 1 + CD(φ). 

We also refer to CD(φ) as the Q-depth of φ. 

Lemma 4.3.7. Suppose the formula φ is not a theorem of S4C, and CD(φ) = n. 
Then there is a stratifed fnite dynamic Kripke frame K with depth n + 1 such that 
φ is refuted at the root of K. 

Proof. The proof is by Lemma 4.3.3 and by a method of ‘disjointizing’ fnite 
Kripke frames. For the details, see (38). 
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4.4 Algebraic semantics for S4C 

We saw that the topological semantics for S4C is a generalization of the Kripke 
semantics. Can we generalize further? Just as classical propositional logic is inter-
preted in Boolean algebras, we would like to interpret modal logics algebraically. 
Tarski and McKinsey showed that this can be done for the logic S4, interpreting 
the D-modality as an interior operator on a Boolean algebra. In this section we 
show that the same can be done for the logic S4C, interpreting the Q -modality via 
O-operators on a Boolean algebra. 

We denote the top and bottom elements of a Boolean algebra by 1 and 0, re-
spectively. 

Defnition 4.4.1. A topological Boolean algebra is a Boolean algebra, A, together 
with an interior operator I on A that satisfes: 

(I1) I1= 1; 
(I2) Ia ≤ a; 
(I3) IIa = Ia; 
(I4) I(a ∧ b) = Ia ∧ Ib. 

Example 4.4.2. The set of all subsets P (X) of a topological space X with set-
theoretic meets, joins and complements and where the operator I is just the topo-
logical interior operator (for A X, I(A) = Int(A)) is a topological Boolean ⊆ 
algebra. More generally, any collection of subsets of X that is closed under f-
nite intersections, unions, complements and topological interiors is a topological 
Booleanalgebra. Wecall anysuchalgebraa topological feldofsets. 

SupposeAisatopologicalBooleanalgebrawithinterioroperatorI. Wedefne 
the open elements in A as those elements for which 

Ia = a (4.1) 

Defnition  4.4.3. Let A1 and A2 be  topological  Boolean  algebras. We  say h  : 
A1     →A2 is a Boolean homomorphism if h preserves Boolean operations. We  say  
h is a Boolean embedding if h is an injective Boolean homomorphism. We say h is 
a homomorphism if h preserves Boolean operations and the interior operator. We 
say h is an embedding if h is an injective homomorphism. Finally, we say A1 and 
A2 are isomorphic if there is an embedding from A1 onto A2. 

Defnition 4.4.4. Let A1 and A2 be topological Boolean algebras, and let h : 
A1 → A2. We say h is an O-map if 

(i) h is a Boolean homomorphism 
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(ii) For any c open in A1, h(c) is open in A2. 

An O-operator is an O-map from a topological Boolean algebra to itself. 

Lemma 4.4.5. Let A1 and A2 be topological Boolean algebras, with interior op-
erators I1 and I2 respectively. Suppose that h : A1 → A2 is a Boolean homomor-
phism. Then h is an O-map iff for every a ∈ A1, 

h(I1a) ≤ I2(h(a)) (4.2) 

Proof. We let G1 and G2 denote the collection of open elements in A1 and A2 
respectively. (⇒) Suppose h is an O-map. Then h(I1a) ∈ G2 by Defnition 4.4.4 
(ii). Also, I1a ≤ a, so h(I1a) ≤ h(a) (h is a Boolean homomorphism, hence 
preserves order). Taking interiors on both sides, we have h(I1a) = I2(h(I1a)) ≤ 
I2(ha). (⇐) Suppose that for every a ∈ A1, h(I1a) ≤ I2(h(a)). Let c ∈ G1. 
Then c  = I1c, so h(c) = h(I1c) ≤ I2(h(c)).  But also, I2(h(c)) ≤ h(c). So 
h(c) = I2(h(c)) and h(c) ∈ G2. 

We are now in a position to state the algebraic semantics for the language LD,Q. 

Defnition 4.4.6. A dynamic algebra is a pair h A, h i , where A is a topological 
Boolean algebra and h is an O-operator on A. A dynamic algebraic model is an 
ordered triple, hA, h, V i, where A is a topological Boolean algebra, h is an O-
operator on A, and V : P → A is a valuation, assigning to each propositional 
variable p ∈ P an element of A. We say hA, h, V i is a model over A. We  can 
extend V  to the set of all formulas in LD,Q by the following recursive clauses: 

V (φ ∨ ψ) = V (φ) ∨ V (ψ) 
V (¬φ) = �V (φ) 
V (Dφ) = IV (φ) 
V (Qφ) = hV (φ) 

(The remaining binary connectives, and  , and unary operator, 3, are defned → 
in terms of the above in the usual way.) 

We defne standard validity relations. Let N = hA, h, V i be a dynamic alge-
braic model.  We say φ is true in N (N |= φ) iff V (φ) = 1. Otherwise, we say 
φ is refuted in N . We say φ is valid in A ( |=A φ) if for any algebraic model N 
over A, N |= φ.  Finally, we let DMLA = {φ | |=A φ} (i.e., the set of validities 
in A). In our terminology, soundness of S4C for A is the claim: S4C ⊆ DMLA. 
Completeness of S4C for A is the claim: DMLA ⊆ S4C. 
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Proposition 4.4.7. (Soundness) Let A be a topological Boolean algebra.   Then 
S4C ⊆ DMLA. 

Proof. We have to show that the S4C axioms are valid in A and that the rules of 
inference preserve truth. Tosee that (A1) is valid, note that: 

V (Q(φ ∨ ψ)) = h(V (φ) ∨ V (ψ)) 
= h(V (φ)) ∨ h(V (ψ)) (h a Boolean homomorphism) 
= V (Qφ ∨ Qψ) 

Thus V ( Q (φ∨ ψ) ↔( Q  φ ∨ψQ )) = 1. Validity of (A2) is proved similarly. For 
(A3), note that: 

V (QDφ) = h(IV (φ)) 
≤ Ih(V (φ)) (by Lemma 4.4.5) 
= V (D Q φ) 

So V (   Q Dφ)   ≤V (D   Q φ) and V (   Q Dφ →D    Q φ) = 1. This takes care of the 
special -modality axioms. The remaining axioms are valid by soundness of S4 Q 
for any topological Boolean algebra—see e.g., (33). To see that necessitation for 
Q preserves validity, suppose that φ is valid in A (i.e., for every algebraic model 
N = hA, h, V i, we have V (φ) = 1). Then V (Qφ) = h(V (φ)) = h(1) = 1, and 
Qφ is valid in A. 

4.5 Reduced measure algebras 

We would like to interpret S4C not just in arbitrary topological Boolean algebras, 
but in algebras carrying a probability measure—or ‘measure algebras.’ In this sec-
tion we show how to construct such algebras from separable metric spaces together 
with a σ-fnite Borel measure (defned below). 

Defnition 4.5.1. Let A be a Boolean σ-algebra, and let µ be a non-negative func-
tion on A, with µ(0) = 0. We say µ is a measure on A if for any countable 
collection {an} of disjoint elements in A, µ(  W 

n an) = P 
nµ(an). 

If µ is a measure on A, we say µ is positive if 0 is the only element at which µ 
takes the value 0. We say µ is σ-fnite if 1 is the countable join of elements in A 
with fnite measure.2 Finally, we say µ is normalized if µ(1) =1. 

W 2I.e., thereisacountablecollectionofelementsAninAsuchthat n An = 1 and µ(An) < ∞ 
for each n ∈ N. 
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Defnition 4.5.2. A measure algebra is a Boolean σ-algebra A together with a 
positive, σ-fnite measure µ on A. 

Lemma 4.5.3. Let A be a Boolean σ-algebra and let µ be a σ-fnite measure on 
A.  Then there is a normalized measure ν on A such that for all a ∈ A, µ(a) = 0 
iff ν(a) = 0. 

Proof. Since µ is σ-fnite, there exists a countable collection {sn | n ≥ 1} ⊆ A 
W 

such that n ≥1 sn = 1 and µ(sn) < ∞ for each n ≥ 1 . WLOGwecanassume 
the sn’s are pairwise disjoint (i.e., sn ∧ sm = 0 for m =6 n). For any a ∈ A, let 

X 
n µ(a ∧ sn) ν(a) = 2� 

µ(sn) 
nn≥≥ 
11 

The reader can verify that ν has the desired properties. 

In what follows, we show how to construct measure algebras from a topological 
space, X, together with a Borel measure on X. The relevant defnition is given 
below. 

Defnition 4.5.4. Let X be a topological space. We say that µ is a Borel measure 
on X if µ is a measure defned on the σ-algebra of Borel subsets of X. 3 

Let X be a topological space, and let µ be a σ-fnte Borel measure on X. We 
let Borel(X) denote the collection of Borel subsets of X and let Nullµ denote 
the collection of measure-zero Borel sets in X. Then Borel(X) is a Boolean σ-
algebra, and Nullµ is a σ-ideal in Borel(X). We form the quotient algebra 

MX 
µ =Borel(X)/Nullµ 

(Equivalently, we can defne the equivalence relation ∼ on Borel sets in X by 
A ∼ B iff µ(A 4 B) = 0, where 4 denotes symmetric difference.  Then M µ 

X 
µ are 

is the algebra of equivalence classes under ∼.) Boolean operations in MX 
defned in the usual way in terms of underlying sets: 

|A| ∨ |B| = |A ∪ B| 
|A| ∧ |B| = |A ∩ B| 

�|A| = |X �A| 

Lemma 4.5.5. There is a unique measure ν on µ  such that ν A = µ(A) for all M X | 
| A in Borel(X). Moreover, the measure ν is σ-fnite and positive. 

3I.e., on the smallest σ-algebra containing all open subsets of X. 
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4 

Proof. See (15, p. 79). 

It follows from Lemma 4.5.5 that M µ is a measure algebra. We follow Halmos 
µ 

X X 
(15) in referring to any algebra of the form M as a reduced measure algebra. 

Lemma 4.5.6. Let X be a topological space and let µ be a σ-fnite Borel measure 
µ on X.  Then for any |A|, |B| ∈ MX, |A| ≤ |B| iff A ⊆ B ∪ N for some N   ∈ 

Nullµ. 

Proof. (⇒) If |A| ≤ |B|, then |A| ∧|B| = |A|, or equivalently |A ∩ B| = |A|. This 
means that (A ∩ B) 4 A ∈ Nullµ, so A �B ∈ Nullµ. But A ⊆ B ∪ (A �B). 
(⇐) Suppose A ⊆ B ∪ N for some N ∈ Nullµ. Then A ∩ (B ∪ N) = A, and 
|A| ∧ |B ∪ N | = |A|. But |B ∪ N | = |B|, so |A| ∧ |B| = |A|, and |A| ≤ |B|. 

For the remainder of this section, let X be a separable metric space, and let µ 
be a σ-fnite Borel measure on X. Where the intended measure is obvious, we will 

µ drop superscripts, writing MX for MX. 
µ So far we have seen only that MX is a Boolean algebra. In order to interpret 

the D-modality of S4C in Mµ , we need to construct an interior operator on this X µ 

algebra (thus transforming MX into a topological Boolean algebra).  We do this 
via the topological structure of the underlying space, X. Let us say that an element 
a ∈ M µ is open if a = |U| for some open set U ⊆ X. We denote the collection 

µ 
X 

of open elements in MX by GX (or, dropping superscripts, GX ). 

Proposition 4.5.7. Gµ 
X is closed under (i) fnite meets and (ii) arbitrary joins. 

Proof. (i) This follows from the fact that open sets in X are closed under fnite 
intersections. (ii) Let  ai i I be a collection of elements in Gµ . We need to { | ∈ } X 
show that sup ai i I exists and is equal to some element in µ . Since X is { | ∈ } X 
separable, there exists a countable dense set D in X. Let be the collection of G B 
open balls in X centered at points in D with rational radius. Then any open set in 
X can be written as a union of elements in B. Let S be the collection of elements 
B ∈ B such that |B| ≤ ai for some i ∈ I. We claim that 

[ 
sup {ai | i ∈ I} = | S| 

First, we needtoshow that | S 
S| is an upper bound on {ai| i ∈ I}. For each 

i ∈ I , ai = |Ui| for some open set Ui ⊆ X . Since Ui is open, it can be written as 
4In fact, Halmos allows as ‘measure algebras’ only algebras with a normalized measure. We 

relaxthisconstrainthere, inordertoallowforthe‘reducedmeasurealgebra’generatedbytheentire 
real line together with the usual Lebesgue measure. This algebra is, of course, isomorphic to µ, MX 
where X is the real interval [0, 1], and µ is the usual Lebesgue measure on X. This amendment was 
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a union of elements in B. Moreover, each of these elements is a member of S (if S S 
B ∈ B and B ⊆ Ui , then |  B |≤ | Ui | = ai ). So Ui ⊆ S and ai = | Ui | ≤ | S 

For the reverse inequality (  ) we need to show that if  is an upper bound | ≥ 
on {ai | i ∈ I}, then 

. 
| S 

S| ≤ m.  Let m = |M |.  Note that S is countable (since 
S   and    is countable). We can write S = Bn  n   N . Then for each n N, ⊆ B B { | ∈ } 
there exists such that . By Lemma 4.5.5, for ∈i ∈ I |Bn| ≤ aS i ≤ m S S Bn ⊆ M ∪ Nn some Nn ∈ Nullµ. Taking unions, Bn ⊆ M ∪ Nn, and Nn ∈ Nullµ. n n n S 
By Lemma 4.5.5, |S| = | Bn| ≤ m. n 

We can now defne an interior operator, Iµ , on Mµ via the collection of open 
µ 

X X 

elements, GX . For any a ∈ MX , let 
Iµ a = sup {c ∈ Gµ | c ≤ a} 
X X 

Lemma 4.5.8. Iµ 
X is an interior operator. 

µ Proof. For simplicity of notation, we let I denote Iµ 
X 

and let G denote G X . Then 
(I1) follows from the fact that 1 ∈ G. (I2) follows from the fact that a is an 
upper bound on {c ∈ G | c ≤ a}. For (I3) note that by (I2), we have IIa ≤ Ia. 
Moreover, if c ∈ G with c ≤ a, then c ≤ Ia (since Ia is supremum of all such 
). Thus , and .  For (  I) 4 c 

W 
{c  ∈ G | c  ≤ a} ≤ 

W 
{c  ∈ G | c  ≤ Ia} Ia ≤ IIa 

note that since a ∧ b ≤ a, we have I(a ∧ b) ≤ Ia. Similarly, I(a ∧ b) ≤ Ib, so 
I(a∧ b) ≤ Ia∧ Ib. For the reverse inequality, note that Ia∧ Ib ≤ a (since Ia ≤ a), 
and similarly Ia ∧ Ib ≤ b. So Ia ∧ Ib ≤ a ∧ b. Moreover, Ia ∧ Ib ∈ G. It follows 
that Ia ∧ Ib ≤ I(a∧ b). 

Remark 4.5.9. Is the interior operator Iµ non-trivial?  (That is, does there exist 
X 

µ a ∈ MX such that Ia 6= a?) This depends on the space, X, and the measure, µ. 
If we let X be the real interval, [0, 1], and let µ be the Lebesgue measure on Borel 
subsets of X, then the interior operator is non-trivial. For the proof, see (22). But 
suppose µ is a non-standard measure on the real interval, [0, 1], defned  by: 

( 
1 if 12 ∈ A 

µ(A) = wiseother 

Then Borel([0, 1])/Nullµ is the algebra 2, and both elements of this algebra are 
‘open.’  So Ia = a for each element a in the algebra. 

Remark 4.5.10. The operator IX 
µ does not coincide with taking topological in-

teriors on underlying sets. More precisely, it is in general not the case that for 
µ A ⊆ X, I (|A|) = |Int (A)|, where ‘Int(A)’ denotes the topological interior of X 
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A. Let X be the real interval [0, 1] with the usual topology, and let µ be Lebesgue 
measure  restricted  to  measurable  subsets  of X. Consider  the  set X �Q and 
note that |X �Q| = |X| (Q is countable, hence has measure zero).    We  have: 
Iµ (|X �Q|) = Iµ (|X|) = Iµ (1) = 1. However, |Int (X �Q)| = |∅| = 0. X X X 
Remark 4.5.11. Note that an element a ∈ M µ is open just in case Iµ a = a. 

X µ µ 
X a = sup {c ∈ G | a} = X µ Indeed, if a is open, then a ∈ {c ∈ G  | c ≤ a} . So X c µ µ 

≤ I a. Also, if I a = a, then a is the join of a collection of elements in G , and so X X X µ a ∈ X. This shows that the defnition of ‘open’ elements given above fts with the 
defnition in (1). G 

In what follows, it will sometimes be convenient to express the interior operator 
Iµ 
X in terms of underlying open sets, as in the following Lemma: 

S 
Lemma 4.5.12. Let A ⊆ X. Then Iµ (|A|) = | {O open | |O| ≤ |A|}| X 

Proof. By defnition of Iµ , Iµ (|A|) = sup{c ∈ Gµ | c ≤ |A|}. Let B and D be X X X 
as in the proof of Proposition 4.5.7, and let S be the collection of elements B ∈ B 

X µ S S S such that |B| ≤ |A|. Then by the proof of Proposition 4.5.7, I (|A|)= | S|. But now S = {Oopen ||O| ≤ |A|}. (This follows from the 
fact that any open 

set O ⊆ X can be written as a union of elements in B.) Thus, I (µ |A|) = | S S| = 
S 

| {Oopen||O| ≤ |A|}|. X 

µ WehaveshownthatMX 
together with the operator X Iµ is a topological Boolean 

algebra. Of course, for purposes of our semantics, we are interested in O-operators 
on X . How do such maps arise? Unsurprisingly, a rich source of examples 
comes from continuous functions on the underlying topological space X. Let us 
spell this out more carefully. 

M µ 

Defnition 4.5.13. Let X and Y be topological spaces and let µ and ν be Borel 
measures on X and Y respectively. We say f : X → Y is measure-zero preserving 
(MZP) if for any A ⊆ Y , ν(A) = 0 implies µ(f �1(A)) = 0. 

Lemma 4.5.14. Let X and Y  be separable metric spaces, and let µ and ν be σ-
fnite Borel measures on X and Y  respectively.  Suppose B is a Borel subset of X  
with µ(B) = µ(X), and f : B → Y  is measure-zero preserving and continuous. 
Defne h|·| : Mν → M µ by 

f Y X 

h|·|(|A|) = |f�1(A)| f 

Then h|·| is an O-map. In particular, if X = Y , then h|·| is an O-operator. f f 

Proof. First, we must show that h|·| is well-defned.5 
f 
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Indeed, if |A| = |B|, then 
5Note that by continuity of f, f�1(A) is a Borel set in B, hence also a Borel set in X. 
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ν(A 4 B) = 0. And since f is MZP, µ (f �1(A) 4 f�1(B)) = µ (f �1(A 4 B)) = 
0. So f �1(A) ∼ f �1(B). This shows that h|·||A| is independent of the choice of f 

representative, A. Furthermore, it is clear that h|·| is a Boolean homomorphism. To f 

, h|·|(c) ∈ Gµ see that it is an O-map, we need only show that if c ∈ Gν 
f . Y X 

But if c  ∈ Gν then c  = |U | for some open set U  ⊆ Y . By continuity of Y 
f ,  f �1(U ) is open in B. So f �1(U ) = O ∩ B for some O open in X. So 
h|·|(c) = |f �1(U )| = |O| ∈ Gµ . 
f X 

By the results of the previous section, we can now interpret the language 
of S4C in reduced measure algebras. In particular, we say an algebraic model 
A, h, V is a dynamic measure model if A = M X 

µ for some separable metric h i 
space X and a σ-fnite Borel measure µ on X. 

We are particularly interested in the reduced measure algebra generated by the 
real interval, [0,1], togetherwiththeusualLebesguemeasure. 

Defnition 4.5.15. (Lebesgue Measure Algebra) Let I be the real interval [0, 1] and 
let λ denote Lebesgue measure restricted to the Borel subsets of I. The Lebesgue 
measure algebra is the algebra Mλ . I 

Because of it’s central importance, we denote the Lebesgue measure algebra 
without subscripts or superscripts, by M. Furthermore, we denote the collection 
ofopenelements in MbyGandtheinterioroperatoron Mby I. 

As in Defnition 4.4.6, we let DMLM = {φ |  |=M φ} (i.e.,  the  set  of 
validities in M). In our terminology, soundness of S4C for M is the claim: 
S4C ⊆ DMLM. Completeness of S4C for M is the claim: DMLM ⊆ S4C. 

Proposition 4.5.16. (Soundness) S4C ⊆ DMLM. 

Proof. Immediate from Proposition 4.4.7. 

Remark 4.5.17. The algebraM   is isomorphic to the algebra Leb([0, 1])/Nullµ 
where Leb([0, 1]) is the σ-algebra of Lebesgue-measureable subsets of the real in-
terval [0, 1], and Nullµ is the σ-ideal of Lebesgue measure-zero sets. This follows 
from the fact that every Lebesgue-measureable set in [0, 1] differs from some Borel 
set by a set of measure zero. 

4.6 Isomorphisms between reduced measure algebras 

In this section we use a well-known result of Oxtoby’s to show that any reduced 
measure algebra generated by a separable metric space with a σ-fnite, nonatomic 
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Borel measure is isomorphic toM   . By Oxtoby’s result, we can think of as the 
canonical separable measure algebra. 

In the remainder of this section, let denote the space [0, 1] Q (with the J � 
usual metric topology), and let δ denote Lebesgue measure restricted to the Borel 
subsets of J . 

Defnition 4.6.1. A topological space X is topologically complete if X is homeo-
morphic to a complete metric space. 

Defnition 4.6.2. Let X be a topological space. A Borel measure µ on X    is 
nonatomic if µ({x}) = 0 for each x ∈ X. 

Theorem 4.6.3.  (Oxtoby, 1970) Let X be a topologically complete, separable met-
ric space, and let µ be a normalized, nonatomic Borel measure on X. Then there 
exists a Borel set B ⊆ X and a function f : B → J such that µ(X �B) = 0 and f 
is a measure-preserving homeomorphism (where the measure on J is δ). 

Proof. See (30). 

Lemma 4.6.4. 6 Suppose X and Y are separable metric spaces, and µ and ν are 
normalized Borel measures on X and Y respectively. If f : X → Y is a measure 

µ preserving homoemorphism, then M   is isomorphic to Mν . X Y 

Proof. For simplicity of notation, we drop superscripts, writing simply MX , GX , 
·| ·| and IX , etc. Let h| : MY → MX be defned by h| (|A|) = |f�1(A)|. This f f 

function is well-defned because f is MZP and continuous. (The frst property 
ensures that h|·|(|A|) is independent of representative A; the second ensures that f f 
�1(A) is Borel.) Clearly h|·| is a Boolean homomorphism. We can defne the f 

1 : MX → MY by h|·| |·| and h|·| mapping h|·| 
1(|A|) = |f(A)|. Then hf 1 are f� f� f� 

inverses, so h|·| is bijective. We need to show that h|·| preserves interiors—i.e., f f 

h|·|(IY a) = IX h
|·|(a). The inequality (≤) follows from the fact that h|·| is an O-f f f 

map (see Lemma 4.5.14). For the reverse inequality, we need to see that h|·|(IY a) f 

is an upper bound on {c ∈ GX | c ≤ h|·|(a)}. If c ∈ GX , then h|·| 
1(c) ∈ GY f 

1(c) ≤ h|·| f� 
and if c ≤ hf

|·|(a), then h|·| 
1(hf

|·|(a)) = a. Thus h|·| 
1(c) ≤ IY a, and 

f� f� f� 

·|(h|·| |·|(IY a). c = h| 
1(c)) ≤ hf f f� 

6We can relax the conditions of the lemma, so that instead of requiring that f is measure-
preserving, we require only that ν(f (S)) = 0 iff µ(A) = 0. In fact, we can further relax these 
conditions so that f : B   → C, where B   ⊆ X, C  ⊆Y , µ(B   4 X) = 0, and ν(C 4 Y ) = 0. We 
prove the lemma as stated because only this weaker claim is needed for the proof of Corollary 4.6.5. 
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Corollary 4.6.5. Let X be a separable metric space, and let µ be a nonatomic 
σ-fnite Borel measure on X with µ(X) > 0. Then, 

MX µ ∼= M 

Proof. By Lemma 4.5.3, we can assume that µ is normalized.7 Let Xcomp be the 
completion of the metric space X. Clearly Xcomp is separable. We can extend 
the Borel measure µ on X to a Borel measure µ ∗ on Xcomp by letting µ ∗(S) = 

∗ µ(S ∩ X) for any Borel set S in Xcomp. The reader can convince himself that µ 
µ ∼ is a normalized, nonatomic, σ-fnite Borel measure on Xcomp, and that MXcomp = 

M X
µ . By Theorem 4.6.3, there exists a set B ⊆ Xcomp and a function f : B → J 

suchthatµ ∗(B)=1andf isameasure-preservinghomeomorphism. ByLemma 
4.6.4, MJ ∼= MB. We have: 

∼ ∼ Mµ M = = = Mµ ∗ 

Xcomp 
∼ MJ ∼ MB = 

4.7 Invariance maps 

At this point, we have at our disposal two key results: completeness of S4C for 
M µ fnite stratifed Kripke frames, and the isomorphism between X and for any 

separable metric space X and σ-fnite, nonatomic Borel measure µ. Our aim in 
what follows will be to transfer completeness from fnite stratifed Kripke frames 
totheLebesguemeasurealgebra, M . Buthowtodothis? 

We can view any topological space as a topological Boolean algebra—indeed, 
as the topological feld of all subsets of the space (see Example 4.4.2). Viewing 
the fnite stratifed Kripke frames in this way, what we need is ‘truth-preserving’ 
maps between the algebras generated by Kripke frames and M X 

µ , for appropri-
ately chosen X and µ. The key notion here is that of a “dynamic embedding” 
(defned below) of one dynamic algebra into another. Although our specifc aim is 
to transfer truth from Kripke algebras to reduced measure algebras, the results we 
present here are more general and concern truth preserving maps between arbitrary 
dynamic algebras. 

Recall that a dynamic algebra is a pair A, h , where A is a topological Boolean h i 
algebra, and h is an O-operator on A. 

7More explicitly: If µ is σ-fnite, then by Lemma 4.5.3 there is a normalized Borel measure µ ∗ 

on X such that µ ∗(S) = 0 iff µ(S) = 0 for each S ⊆ X . It follows that Mµ ∼ = Mµ ∗ 

(where the 
X X 

isomorphism is not, in general, measure-preserving). 

10 



  

     
    

     
    

 

  

  

  

 
 

 
 
 
 

     
               

    

        

   
             

    

   

    
   

    

  
             

    

   

    
  

    
      

  

       
    

  

     
     

   
            

               
              

 

  

 

 

 

 

 

 

 

Defnition 4.7.1. Let M1 = hA1, h1i and M2 = hA2, h2i be two dynamic alge-
bras. We say a function h : M1 → M2 is a dynamic embedding if 

(i) h is an embedding of A1 into A2; 

(ii) h ◦ h1 = h2 ◦ h. 

Lemma 4.7.2. Let M1 = Ah 1, h1, V1 i and M2  =  Ah 2, h2, V2  i be two dynamic 
algebraic models. Suppose that h : h A1, h1 i → h A2, h2 i is a dynamic embedding, 
and for every propositional variable p, 

V2(p) = h ◦ V1(p) 

Then for any φ ∈ LD,Q, 
V2(φ) = h ◦ V1(φ) 

Proof. By induction on the complexity of φ. 

A1, h1, V1 and M2 A2, h2, V2 i be two dynamic Corollary 4.7.3. Let M1 = h i = h 
algebraic models. Suppose that h : h A1, h1 i → h A2, h2 i is a dynamic embedding, 
and for every propositional variable p, 

V2(p) = h ◦ V1(p) 

Then for any φ ∈ LD,Q, 
M1 |= φ iff   M2 |= φ 

Proof. M2 |= φ iff V2(φ) = 1 
iff h ◦ V1(φ) = 1 (by Lemma 4.7.2) 
iff V1 = 1 (since h is an embedding) 

Let X, F be a dynamic topological space and let AX be the topological feld h i 
of all subsets of X (see Example 4.4.2). We defne the function hF on AX by 

hF (S) = F�1(S) 

It is not diffcult to see that hF is an O-operator. We say that h AX , hF i is the 
dynamic algebra generated by (or corresponding to) to the dynamic topological 
space h X, F i . 

Our goal is to embed the dynamic algebras generated by fnite dynamic Kripke 
frames into a dynamic measure algebra, µ , h , where X is some appropriately hM X 
chosen separable metric space and µ is a nonatomic, σ-fnite Borel measure on X. 
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In view of Corollary 4.7.3 and completeness for fnite dynamic Kripke frames, this 
will give us completeness for the measure semantics. The basic idea is to construct 
such embeddings via ‘nice’ maps on the underlying topological spaces. To this 
end, we introduce the following new defnition: 

Defnition 4.7.4. Suppose X and Y are a topological spaces, and µ is a Borel 
measure on X. Let γ : X → Y . We say γ has the M-property with respect to µ if 
for any subset S ⊆ Y : 

(i) γ�1(S) is Borel; 

(ii) for any open set O ⊆ X , if γ�1(S) ∩ O = 6 ∅ then µ(γ�1(S) ∩ O) > 0. 

Lemma 4.7.5. Suppose h X, F i is a dynamic topological space, where X is a sep-
arable metric space, F is measure-zero preserving, and let µ be a σ-fnite Borel 
measure on X with µ(X) > 0. Suppose hY, Gi is a dynamic topological space, 
and hAY ,hGi is the corresponding dynamic algebra. Let B be a subset of X with 
µ(B) = µ(X), and suppose we have a map γ : B → Y  that  satisfes: 

(i) γ is continuous, open and surjective; 

(ii) γ ◦ F = G ◦ γ; 

(iii) γhas the M-property with respect to µ. 

µ Then the map Φ : hAY , hGi → hMX , hF i defned by 
| 

Φ(S) = |γ�1(S)| 

is a dynamic embedding. 

µ Proof. By the fact that MX is isomorphic to MB, we can view Φ as a map from 
|·| AY , hG into µ , hF  , where hF 

µ is viewed as an operator on B. Note that h i hM B i M 
Φ is well-defned by the fact that γ satisfes clause (i) of the M-property. We 
need to show that (i) Φ is an embedding of hAY , hGi into hMBµ , hF i, and (ii) 

| |·| ◦ Φ. Φ ◦ hG = hF 

(i) ClearlyΦ isaBooleanhomomorphism. WeprovethatΦ is injectiveandpre-
serves interiors. 
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• (Injectivity) Suppose Φ(S1) = Φ(S2) and S1 6= S2. Then γ�1(S1) ∼ 
γ�1(S2), and S1 4 S2 = ∅. Let y ∈ S1 4 S2. By surjectivity of γ, 
we have γ�1(y) =6 ∅. Moreover, µ(γ�1(y)) > 0 ( since γ has the M-
propertyw.r.t. µ,andtheentirespaceB isopen). Soµ(γ�1(S1)4γ�1(S2))= 
µ(γ�1(S1 4 S2)) ≥ µ(γ�1(y)) > 0. And γ�1(S1) 6∼ γ�1(S2). ⊥. 

• (Preservation of Interiors) For clarity, we will denote the topological 
interior in the spaces Y and B by IntY and IntB respectively, and the 

µ interior operator on MB by I. Let S ⊆ Y . It follows from continuity 
and openness of γ : B → Y , that 

γ�1(IntY (S)) = IntB(γ�1(S)) 

Note that, 

– Φ(IntY (S)) = |γ�1(IntY (S)) | 
= | IntB(γ�1(S)) | 

[ 
= | {Oopen in B | O ⊆ γ�1(S) } | 

– I(Φ(S)) = I |γ�1(S)| 
[ 

= | {Oopen in B | |O| ≤ |γ�1(S)|}| (Lemma 4.5.12) 
Thusit issuffcient toshowthatforanyopenset O ⊆ B, 

O ⊆ γ�1(S) iff |O| ≤ |γ�1(S)| 

The left-to-right direction is obvious. For the right-to-left direction, 
suppose (toward contradiction) that |O| ≤ |γ�1(S)| but that O 6⊆ 
γ�1(S). Then O ⊆ γ�1(S) ∪ N for some N ⊆ B with µ(N ) = 0. 
Moreover, since O 6⊆ γ�1(S), there exists x ∈ O such that x ∈/ 
γ�1(S). Let y = γ(x). Then γ�1(y) ∩ O = 6 ∅. Since γ has the 
M-property with respect to µ, it follows that µ(γ�1(y) ∩ O) > 0. 
But γ�1(y) ∩ O ⊆ N (since γ�1(y) ∩ O ⊆ O ⊆ γ�1(S) ∪ N , and 
γ�1(y) ∩ γ�1(S) = ∅). ⊥. 

We’ve shown that Φ is an embedding of hAY , hGi into hM , h i. In view µ Φ is an | µ 
of the isomorphismbetween M and M , we have sho B F 

µ 

X B wn that 
embedding of hAY , hGi into MX . 

γ�1◦G�1 (ii) Weknowthat γ◦F = G◦γ. Takinginverses,wehaveF�1◦γ�1 = . 
Now let S ⊆ Y . Then: 
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Φ ◦ hG(S) = |γ�1(G�1(S))| 
= |F �1(γ�1(S))| 

· = h| |◦ Φ(S) F 

4.8 Completeness of S4C for the Lebesgue measure alge-
bra with O-operators 

In this section we prove the main result of the chapter: completeness of S4C for 
the Lebesgue measure algebra, M. Recall that completeness is the claim that 

DMLM ⊆ S4C. Infact,weprovethecontrapositive: Foranyformula φ ∈ LD,Q, if 
φ / S4C, then φ / DMLM. Our strategy is as follows. If φ is a non-theoremof ∈ 

S4C, then by Lemma 4.3.7, φ is refuted in some fnite stratifed Kripke frame K = 
hW,R,Gi. Viewing the frame algebraically (i.e., as a topological feld ofsets), we 
must construct a dynamic embedding Φ : hAW,hGi → hM,hi, wherehAW,hGi is 

the dynamic Kripke algebra generated by the dynamic Kripke frameK, and h is 
someO-operatoronM. InviewoftheisomorphismbetweenMandX forany 

separable metric space, X, and nonatomic, σ-fnite Borel measure µ on X with µ(X) µ M > 0, it is enough to construct a dynamic embedding of the Kripke 
algebra into µ , for appropriately chosen X and µ. MX 

The constructions in this section are a modifcation of the constructions intro-
duced in (38), where it is proved that S4C is complete for topological models in 
Euclidiean spaces of arbitrarily large fnite dimension. The modifcations we make 
are measure-theoretic, and are needed to accommodate the new ‘probabilistic’ set-
ting. Weare very much indebted to Slavnov for his pioneering work in (38).8 

4.8.1 Outline of the proof 

Let us spell out the plan for the proof a little more carefully. The needed ingredients 
are all set out in Lemma 4.7.5. Our frst step will be to construct the dynamic 
topological space X, F , where X is a separable metric space, and F is a measure-h i 
zero preserving, continuous function on X. We must also construct a measure µ 
on the Borel sets of X that is nonatomic and σ-fnite, such that µ(X) > 0. We 
want to embed the Kripke algebra AW , hG into µ , h|·| , and to do this, we h i hM X i 
must construct a topological map γ : B   W , where B   X and µ(B) = 1,  → andγ satisfestherequirementsofLemma4.7.5. Inparticular,wemustensurethat 

8Where possible, we have preserved Slavnov’s original notation in (38). 
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(i) γ is open, continuous and surjective, (ii) γ F = G γ and (iii) γ has the M-◦ 
property with respect to µ. 

In Section 8.2, we show how to construct the dynamic space h X, F i , and the 
Borel measure µ on X. In Section 8.3, we construct the map γ : X  →W , and 
show that it has the desired properties. 

4.8.2 The topological carrier of countermodels 
Let 

n 
Xn = I1 t· · · t I 

where Ik is the k-th dimensional unit cube and denotes disjoint union. We would t 
like Xn to be a metric space, so we think of the cubes Ik as embedded in the space 
Rn, and as lying at a certain fxed distance from one another. For simplicity of 
notation, we denote points in Ik by (x1, . . . , xk), and do not worry about how 
exactly these points are positioned in Rn . 

For each k < n, defne the map Fk : Ik → Ik+1 by (x1, . . . , xk) 7→ (x1, . . . , xk, 2 
1 ). 

We let 

F(x) = 

⎧
⎨

⎩ 

Fk(x) if x ∈ Ik, k < n 

x if x ∈ In 

Clearly F is injective. For each k ≥ 2 we choose a privileged “midsection” Dk = 
1   [0,1]k�1 × { } of Ik. Thus, f (Ik) = Dk+1 for k < n. 2 

The space Xn will be the carrier of our countermodels (we will choose n ac-
cording to the -depth of the formula which we are refuting, as explained in the Q 
next section). We defne a non-standard measure, µ, on Xn. This somewhat un-
usual measure will allow us to transfer countermodels on Kripke frames back to 
the measure algebra, MXµ . 

n 
Let µ on I1 be Lebesgue measure on R restricted to Borel subsets of I1. 

Suppose we have  defned µ on I1, . . . , Ik .  For any Borel set B in Ik+1 ,  let 
B1 = B ∩ Dk+1, and B2 = B \ Dk+1. Then B = B1 tB2. We defne 

µ(B) = µ(F �1(B1)) + λ(B2) 

where λis the usual Lebesgue measure in Rk+1. Finally, for any Borel set B ⊆ Xn, 
Pn  we let µ(B) = µ(B ∩ Ik) k= 

Note that µ(I1) = 1P , and in general µ(Ik+1) = µ(Ik) + 1.  Thus µ(Xn) = 
1 n n 1 2 µ(I t · · · t I ) = k =  (n + n). 1 2 

Lemma 4.8.1. µ is a nonatomic, σ-fnite Borel measure on Xn. 
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y 

z D2 D3 

I1 I2 I3 

I2 Figure 12: The space X3 = I1 t I3. Note that µ(I1) = 1, µ(I2) = 2,  and 
µ(I3) = 3. The shaded regions in I2 and I3 denote the midsections, D2 and D3, 
respectively. 

Proof. Clearly µ is nonatomic. Moreover, since µ(Xn) < ∞, µ is σ-fnite. The 
only thing left to show is that µ is countably additive. Suppose that { Bm m∈N is a 
collection of pairwise disjoint subsets of Xn. 

Claim 4.8.2. For any k ≤ n, 
[ 

µ ( (Bm ∩ Ik)) = µ(Bm ∩ Ik) 
X m m 

(ProofofClaim: Byinductiononk.9) 
Butnowwehave: 

9The base case is by countable additivity of Lebesgue measure on the unit interval, [0, 1]. For the 
induction step, suppose the claim is true for k �1. Then we have: [ [ 

µ( (Bm ∩ Ik)) = µ [F �1( (Bm ∩ Ik ∩ Dk))] + λ [ (Bm ∩ Ik) \ Dk] (Defn. ofµ) 
m m m 

[ 
= µ [ F�1(Bm ∩ Ik ∩ Dk)] + λ((Bm ∩ Ik) \ Dk) (Count. Add. of λ) 

X m 
X 

m 

= µ[F�1(Bm ∩ Ik ∩ Dk)] + λ((Bm ∩ Ik) \ Dk) (IH) 
X m 
X 
m 

= µ[F�1(Bm ∩ Ik ∩ Dk)] + λ((Bm ∩ Ik) \ Dk) 
X 
m 
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 = (Bm ∩ Ik) (Defn. of µ) 
m 

106 



  

 

 

 

  

  

  

  

   

  
 

 

 
 

    

 

   
 

 

 
 
 

 
           

   

    
  

      
  

   
  

      
 

 
 

        
  

      
                 

      
 

 

   
   
                    

                  

             
 

     

           
      

                           
   

        
           
     

       
 

                
   

 
    

    

 
 

                     
  

     

 

  

 

 

 

 

 

 

 

 

 

 

 

[ X [ 
µ( Bm) = µ[( Bm) ∩ Ik] (by defnition of µ) 

m k m 
X [ 

= µ[ (Bm ∩ Ik)] 
k m 
XX 

= µ(Bm ∩ Ik) (by Claim 4.8.2) 
k m 
XX 

= µ(Bm ∩ Ik) 
m k X 

= µ(Bm) (by defnition of µ) 
m 

Lemma 4.8.3. X is  a  separable  metric  space  and F  : Xn  Xn  is  measure-→ 
preserving and continuous. 

Proof. The set of rational points in Ik is dense in k (k ≤ n), so Xn is separable. 
Continuity of F follows from the fact that F is a translation in Rn; F is measure-
preservingbytheconstructionofµ. 

4.8.3 Completeness 

Assume we are given a formula φ∈  LD,Q such that φ is not a theorem of S4C 
and let n = CD(φ) + 1. By Lemma 4.3.7, there is a fnite stratifed, dynamic 
Kripke model K = h W, R, G, V1 i of depth n such that φ is refuted at the root of 
K. In other words, there is a collection of pairwise disjoint cones W1, ...,Wn S 
with roots w1, .. .,wn 

0 respectively, such that W = k≤ Wk; G is injective; and 0 
1 

G(wk) = wk+1 for each k  < n; and K, w0 |= φ.  Let the space X  = Xn = 
I1 In and the measure µ be as defned in the previous section. We construct t · · · t 
a map γ̃ : X W in a countable number of stages. To do this we will make → 
crucial use of the notion of E-nets, defned below: 

Defnition 4.8.4. Given a metric space S and E > 0, a subset Ω of S is an E-net 
for S if for any y ∈ S, there exists x Ω such that d(x, y) < E (where d denotes 
the distance function in S). 

Observe that if S is compact, then for any E > 0 there is a fnite E-net for S. 

Basic Construction. Let w1 = w1, and let w1, ... ,wr be the R-successors 
root 0 1 

of w 1 
root. At the frst stage, we select r1 pairwise disjoint closed cubes T1, . . . , Tr1 in I1, making sure that their total measure adds up to no more than ( 1 )0+2—that 

P 2 
k k w 1 is, µ(T ) < 1 . For each x in the interior of T we let γ̃(x) = (k ≤ r ). k≤r 4 
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With slight abuse of notation we put γ̃(Tk) = wk. We refer to T1, . . . , Tr1 as 
Sr1   terminal cubes, and we let I1 = I1 � Int (Tk). 1 

i 

At any subsequent stage, we assume we are given a set I1 that is equal to I1 

with a fnite number of open cubes removed from it. Thus I1 is a compact set. We i 
fnd a 1 -net Ωi for I1 and for each point y ∈ Ωi, we choose r1 pairwise disjoint 2i closed cubes, T y, . . . , T y in the 1 -neighborhood of y, putting γ̃(T y) = w (for 

1 r1 2i k k 
k r1, with the same meaning as above). Again, we refer to the Tk’s as terminal ≤ 
cubes. Since Ωi is fnite, we create only a fnite number of new terminal cubes at 
this stage, and we make sure to do this in such a way as to remove a total measure
of no more than (1 )i+2. We let I1 be the set I1 minus the interiors of the new 

2 i+1 i 
terminal cubes. 

After doing this countably many times, we are left with some points in I1 that 
do not belong to the interior of any terminal cube. We call such points exceptional 
points and we put γ̃(x) = w1 for each exceptional point x ∈ I1 . This completes roo 
the defnition of γ̃ on I1 . 

Now assume that we have already defned γ̃ on Ij. We let wj+1 = wj+1 and 
root 0 

let w1, . . . ,wr j+1 be the R-successors of wj+1 . We defne γ̃ on Ij+1 as follows. At roo 
frst we choose rj+1 closed cubes T1, . . . ,Tr j+1 in Ij+1 , putting γ̃(Tk) = wk (for 
k ≤ rj+1). In choosing T1, . . . , Trj+1, we make sure that these cubes are not only 
pairwise disjoint (as before) but also disjoint from the midsection Dj+1. Again, 
wealsomakesuretoremoveatotalmeasureofnomorethan(1)0+2µ(Ij+1). We 

j+1 j+1 S rj+1 2 
let I 1 = I � k=1 Int(Tk). 

At stage i, we assume we are given a set Ij+1 equal to Ij+1 minus the inte-i 
riors of a fnite number of closed cubes. Thus Ij+1 is compact, and we choose a i 

2i . For each y ∈ Ωi we choose rj+1 closed terminal cubes fnite 1 -net Ωi for Ij+1 

T1, . . . , Tr j+1 in the 1 -neighborhood of y. We make sure that these cubes are not 
2 

only pairwise disjoint, but disjoint from the midsection Dj+1. Since Ωi is fnite, 
we add only fnitely many new terminal cubes in this way. It follows that there is 
an E-neighborhood of Dj+1 that is disjoint from all the terminal cubes added up 
to this stage. Moreover, for each terminal cube T of Ij defned at the ith stage, F 
(T ) D⊆j+1, and we let T 0 be some closed cube in Ij+1 containing F (T ) and of 
height at most E. To ensure that the equality γ̃ F (x) = G γ̃(x) holds for all ◦ 
points x belonging to the interior of terminal cubes of Ij, we put: 

γ̃(T 0) = G ◦ γ̃(T ) 

Finally, we have added only fnitely many terminal cubes at this stage, and we do 
so in such a way as to make sure that the total measure of these cubes is no more
than (1 )i+2 µ(Ij+1). We let Ij+1 be the set Ij+1 minus the new terminal cubes 

2 i+1 i 
added at this stage. 
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We iterate this process countably many times, removing a countable number 
of terminal cubes from Ij+1 . For all exceptional points x in Ij+1 (i.e., points that 
do not belong to the interior of any terminal cube defned at any stage) we put 

j+1 γ . Noting that exceptional points of Ij are pushed forward under F to ˜(x) = wroo 
exceptional points in Ij+1 , we see that the equality ˜ γ ◦F (x) = G γ̃(x) holds for 
exceptional points as well. 

This completes the construction of γ̃ on X . We pause now to prove two facts 
about the map γ̃ that will be of crucial importance in what follows. 

Lemma 4.8.5. Let E(Ij) be the collection of all exceptional points in Ij for some 
j ≤ n. Then µ(E(Ij)) ≥ 1 µ(Ij). 2 

Proof. At stage i of construction of γ̃ on Ij, we remove from Ij terminal cubes 
of total measure no more than (1)2 i+2µ(Ij). Thus over countably many stages P 
we remove a total measure of no mor than µ(Ij) ( 1)i+2 = 

1 
µ(I 

j 
). The i≥0 2 2 

remaining points in Ij are all exceptional, so µ(E(Ij)) ≥ µ(Ij) �1 µ(Ij) = 
2 1 µ(Ij). 2 

Lemma 4.8.6. Let x ∈ Ij be an exceptional point for some j n. Then γ̃(x) = 
wj, and for any E > 0 and any wk ∈ Wj there is a terminal cube T contained in 0 
the E-neighborhood of x with γ̃(T ) = wk. 

Proof. Since x ∈ Ij is exceptional, it belongs to Ii
j for each i ∈ N. We can pick i 

large enough so that 1 < E 
2 . But then in the notations above, there exists a point 

2 
y∈ Ωisuchthatd(x,y)< E. ThestatementnowfollowsfromtheBasicConstruc-2 
tion, since for each wk ∈ Wj there is a terminal cube Tk in the 1 -neighborhood of 2 
y (and so also in the E -neighborhood of y) with γ̃(Tk) = wk. 2 

Construction of the maps, γl. In the basic construction we defned a map γ̃ 
: X W →that we will use in order to construct a sequence of ‘approximation’ 
maps, γ1, γ2, γ3, . . . ..., where γ1 = γ̃. In the end, we will construct the needed 
map, γ, as the limit (appropriately defned) of these approximation maps. We 
begin by putting γ1 = γ̃. The terminal cubes of γ1 and the exceptional points of γ1 
are the terminal cubes and exceptional points of the Basic Construction. Note that 
each of I1, . . . , In contains countably many terminal cubes of γ1 together with 
exceptional points that don’t belong to any terminal cube. 

Assume that γl is defned and that for each terminal cube T of γl, all points in 
the interior of T are mapped by γl to a single element in W , which we denote by 
γl(T). Moreover, assume that: 

(i) γl ◦ F = G ◦ γl 
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(ii) for any terminal cube T of γl in Ij, F maps T into some terminal cube T0 of 
γl in Ij+1 , for j < n 

where F is again the embedding (x1, . . . , xj) 7 (x1, . . . , xj, 12 ). 
We now defne γl+1 on the interiors of the terminal cubes of γl. In particular, 

for any terminal cube T of γl in I1, let T 1 = T and let T j+1 be the terminal 
cube of Ij+1 containing F (T j), for j < n. Then we have a system T 1, . . . , T n 

exactly like the system I1 , . . . , In in the Basic Construction. We defne γl+1 on 
the interiors of T 1 , . . . , T n in the same way as we defned γ ˜ on I1 , . . . , In , letting 
w jroot = γl(T j) and letting w1, . . . , wrj be the R-successors of wj .  The only 

roo 
modifcation we need to make is a measure-theoretic one. In particular, in each 
of the terminal cubes T j, we want to end up with a set of exceptional points that 
carries non-zero measure (this will be important for proving that the limit map we 
defne, γ, has the M-property with respect to µ). To do this, assume γl+1 has been 
defned on T 1, . . . , T j, and that for k ≤ j, µ(E(T k)) ≥ 1 µ(T k), where E(T k) 2 
is the set of exceptional points in T k. When we defne γl+1 on T j+1 , we make 
sure that at the frst stage we remove terminal cubes with a total measure of no
more than 1 0+2 µ(T j+1). At stage i where we are given Tj+1 we remove terminal 

2 i 
cubes with a total measure of no more than (1 )i+2 µ(T j+1). Again, this can be 2 
donebecauseateachstage iweremoveonlyafnitenumberofterminalcubes,so 
we can make the size of these cubes small enough to ensure we do not exceed the
allocated measure. Thus, over countably many stages we remove from T j+1 a total P 1 

i≥0 ( 1 )i+2 = measure of no more than µ(T j+1) µ(T j+1). Letting E(T j+1) 

2 
2 2 

1 be the set of exceptional points in T j+1 , we have µ(E(T j+1)) ≥ µ(T j+1). 
We do this for each terminal cube T of γl in I1. Next we do the same for all 

the remaining terminal cubes T of γl in I2 (i.e., those terminal cubes in I2 that 
are disjoint from D2), and again, for all the remaining terminal cubes T of γl in 
I3 (the terminal cubes in I3 that are disjoint from D3), etc. At the end of this 
process we have defned γl+1 on the interior of each terminal cube of γl. For any 
point x X that does not belong to the interior of any terminal cube of γl, we put ∈ 
γl+1(x) = γl(x). The terminal cubes of γl+1 are the terminal cubes of the Basic 
Construction applied to each of the terminal cubes of γl. The points in the interior 
of terminal cubes of γl that do not belong to the interior of any terminal cube of 
γl+1aretheexceptionalpointsofγl+1. 

In view of the measure-theoretic modifcations we made above, we have the 
following analog of Lemma 4.8.5: 

Lemma 4.8.7. Let l ∈ N and let T be any terminal cube of γl and E(T )be the set 
of exceptional points of γl+1 in T . Then 

1 
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Furthermore, the reader can convince himself that we have the following analog 
ofLemma4.8.6forthemaps γl: 

Lemma 4.8.8. Let x be an exceptional point of γl and let γl(x) = w. Then for any   
E > 0 and any v such that wRv, there is a terminal cube T of γl contained in the E-
neighborhood of x with γl(T ) = v. 

Finally, note that if x is an exceptional point of γl for some l, then γl(x) = 
γl+k(x) for any k ∈ N. We let B denote the set of points that are exceptional for 
some γl, and defne the map γ : B → W as follows: 

γ(x) = lim γl(x) 
l→∞ 

Lemma 4.8.9. µ(B) = µ(X). 

Proof. Let Tl be the set of all points that belong to some terminal cube of γl. Note T 
that Tl ⊇ Tl+1 for l ∈ N, and µ(T1) is fnite. Thus µ( l Tl) = liml→∞ µ(Tl)T= 0. 

B = X � 

(The limit value follows from Lemma 4.8.7.) Finally, note that T l Tl. 
So B is Borel, and µ(B) = µ(X) �µ( l Tl)= µ(X). 

We have constructed a map γ : B → W where µ(B) = µ(X).  Moreover, 
by the Basic Construction, we have ◦γl F (x) = G ◦ γl(x) for each l  N.  It 
follows that γ F (x) = G γ(x) for x B. All that is left to show is that (i) γ is ◦ ◦ ∈ 
continuous, open, and surjective; and (ii) γ has the M-property with respect to µ. ∈ 

Lemma 4.8.10. γ has the M-property with respect to µ. 

Proof. We show that for any subset S ⊆ W , (i) γ�1(S) is Borel; and (ii) for any 
open set O ⊆ X, if γ�1(S) ∩ O 6= ∅ then µ(γ�1(S) ∩ O) 6= 0. Note that since W 
is fnite, it is suffcient to prove this for the case where S = {w} for some w ∈ W. 

(i) Note that x ∈ γ�1(w) iff x is exceptional for some γl and x belongs to some 
terminal cube T of γl�1, with γl�1(T ) = w. There are only countably many
such cubes, and the set of exceptional points in each such cube is closed. So 
γ�1(w) is a countable union of closed sets, hence Borel. 

(ii) Suppose that O is open in X with γ�1(w) ∩ O 6= ∅. Let x ∈ γ�1(w) ∩ O. 
Again, x isexceptionalforsome γl. PickE>0suchthattheE-neighborhood 
of x is contained in O. By Lemma 4.8.8, there is a terminal cube T of γl 
contained in the E-neighborhood of x such that γl(T ) = w (since wRw). 
Letting E(T) be the set of exceptional points of γl+1 in T , we know that 
E(T ) ⊆ γ�1(w). But by Lemma 4.8.7, µ(E(T )) ≥ 1 µ(T ) > 0. So E(T ) 2 
is a subset of γ�1(w) ∩ O of non-zero measure, and µ (γ�1(w) ∩ O) > 0. 

110 



  

 

 

 
 

 
 

 
  

  
  

 
  

     

 
 

  
  

 

 
 

 
 
 
 
 

 
 

            
       

  

                     
                 

                
               

                   
   

   

        
      

      
                 
              

     
                

  

  
   

  

   
                  

     
    

                
                   
                 

  
   

   
       

    

    

   

 

  
  

 

 
 

 

  

  
    

  

 

 

In what follows, for any w ∈ W , let Uw = { v ∈ W  | wRv  }(i.e., Uw is the 
smallest open set in W containing w). 

Lemma 4.8.11. γ is continuous. 

Proof. Let U be an open set in W and suppose that x ∈ γ�1(U). Let γ(x) = w U 
. Then x is exceptional for some γl. So x belongs to an (open) terminal cube T of 
γl�1 with γl�1(T) = w. By R-monotonicity of γl(yh ) for all i y B, we know 
that forany y T , γ(y) Uw —i.e., T γ�1(Uw). Moreover,since w U and ∈ ∈ ⊆ ∈ 
U is open, we have Uw ⊆∈U . Thus x ∈ T γ�1(U). This shows that γ�1(U) is 
open in X. ⊆ 

Lemma 4.8.12. γ is open. 

Proof. Let O be open in B and let w∈   γ(O).  We show that Uw γ(O).  We 
know that there exists x O such that γ(x) = w. Moreover, x is exceptional for ∈ 
some γl. Pick E > 0 small enough so that the E-neighborhood of x is contained in 
O. By Lemma 4.8.8, for each v Uw there is a terminal cube Tv of γl contained in ∈ 
the E-neighborhood of x such that γl(Tv) = v. But then for any exceptional point 
yv of γl+1 that lies in Tv, we have γ(yv) = γl+1(yv) = v, and yv ∈ O. We have 
shownthat for all v ∈ Uw, v ∈ γ(O). It followsthat γ(O) isopen. 

Lemma 4.8.13. γ is surjective. 

Proof. This follows immediately from the fact that γ ‘hits’ each of the roots, 
w1, . . . , wn+1, of K and γ is open. 

0 0 

Corollary 4.8.14. φ is refuted in M. 
Proof. Westipulatedthat φ isrefutedinthedynamicKripkemodelK = h W,R,G,V1 . i 
Equivalently, letting M1 = Ah K, hG, V1 be the dynamic algebraic model corre-i 
sponding to K, φ is refuted in M1. By Lemma 4.8.11, Lemma 4.8.12, Lemma 
4.8.13, and Lemma 4.8.10, we showed that γ : X → W is (i) continuous, open 
and surjective; (ii) γ ◦ f = G◦ γ; and (iii) γ has the M-property with respect to µ. 
Thus by Lemma 4.7.5, the map Φ : hAK, hGi → hMX , µ hF i defned by 

| 

Φ(S) = |γ�1(S)| 
µ is a dynamic embedding. We now defne the valuation V2 : P → MX by: 

V2(p) = Φ ◦ V1(p) 
and we let M2 = hM  µ , h , V2i.  By Corollary 4.7.3, M2 |= φ.  In view of the 

µ ∼ 
X F | 

isomorphism MX = M, we have shown that φ is refuted in M. 
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We have shown that for any formula φ ∈ / S4C, φ is refuted in . We conclude M 
thesectionbystatingthiscompletenessresultmoreformallyasfollows: 

Theorem 4.8.15. DMLM ⊆ S4C. 

4.9  Completeness for a single measure model 

In this section we prove a strengthening of the completeness result of the previous 
section, showing that there is a single dynamic measure model , h, V in which hM 
everynon-theoremofS4C isrefuted. 

Defnition 4.9.1. Denote by M ω the product M × M × M . . . This is a Boolean 
algebra, where Boolean operations are  defned component-wise: 

(a1, a2, a3, . . . ) ∨ (b1, b2, b3, . . . ) = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3, . . . ) 
(a1, a2, a3, . . . ) ∧ (b1, b2, b3, . . . ) = (a1 ∧ b1, a2 ∧ b2, a3 ∧ b3, . . . ) 

�(a1,a2,a3,...) = (�a1,�a2,�a3,...) 

Defnition 4.9.2. We say (a1, a2, a3, . . . ) is an open element in Mω if ak is open 
in M for each k ∈ N. 

The collection of open elements in Mω is closed under fnite meets, arbitrary 
joins and contains the top and bottom element (since operations in Mω are com-
ponentwise). We defne the operator Iω on Mωby: 

Iω(a1, a2, a3, . . . ) = (Ia1, Ia2, Ia3, . . . ) 

Then Iω is an interior operator on M ω (the proof is the same as the proof of Lemma 
4.5.8). So the algebra ω together with the interior operator Iω is a topological M 
Boolean algebra. 

Lemma 4.9.3. There is a dynamic algebraic model M = hMω, h, V i such that 
for any formula φ ∈ LD,Q, the following are equivalent: 

(i) S4C ` φ; 

(ii) M |= φ. 

Proof. Let φh k be an enumeration of all non-theorems of S4C (there are only i 
countably many formulas, so only countably many non-theorems). By complete-
ness of S4C for M, for each k ∈ N, there is a model Mk = hM, hk, Vki such that 
Mk |= φk. We construct a model M = hMω,h,V i, where h and V are defned 
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as follows. For any h ak ki ∈N = (a1,a2, a3, . . . ) ∈ M ω, and for any propositional 
variable p: 

h((a1, a2, a2, . . . )) = hhk(ak)ik∈N 

V (p) = hVk(p)ik∈N 

(Thefact thath isanO-operatorfollowsfromthefact that h iscomputedcompo-
nentwise according to the hk’s, and each hk is an O-operator). 

We can now prove the lemma. The direction (i) ⇒ (ii) follows from Propo-
sition 4.4.7. We show (ii) ⇒ (i), by proving the contrapositive. Suppose that 
S4C |=φ. Then φ = φk for some k ∈ N. Weclaim that 

πkV (φ) = Vk(φ) 

where πk is the projection onto the kth coordinate. (Proof: By induction on com-
plexity of φ, and the fact that πk is a topological homomorphism.) In particular, 

πkV (φk) = Vk(φk) 6= 1. So V (φk) = 1, and M |= φk. 

Lemma 4.9.4. Mω is isomorphic to M. 

Proof. Weneedtoconstructanisomorphismfrom Mω onto M. Let (a1,a2,a3, . . .) 
be an arbirary element in M ω .  Then for each k N, we can choose a set 

[0, 1] such that ak = Ak and 1 / Ak. We defne a sequence of points Ak ⊆ | | 
∈ skintherealinterval[0,1]asfollows: 

s0 = 0 
s1 = 1/2 
s2 = 3/4 

k 

In general, sk = 2 �1 (k ≥ 1). We now defne a sequence of intervals I k having 
2 

the ak’sasendpoints: 
1 

I0 = [0, ) 2 1 3 
I1 = [ ) 2 , 3 7 4 

I2 = [ ) 4 , 8 
and in general Ik = [sk, sk+1). Our idea is to map each set Ak into the interval Ik. 
We do this by letting Bk = lk Ak +sk where lk is the length of Ik. Clearly Bk ⊆ Ik 
and Bk ∩ Bj = ∅ for all k =6 j. We can now defne the map h : Mω → M by: 

[ 
h(a1,a2,a3, . . .) = | Bk | 

k∈N 
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where Bk is defned as above. The reader can now verify that h is an isomorphism. 

Corollary 4.9.5. There is a dynamic measure model M = hM,h,V i such that for 
any formula φ ∈ LD,Q, the following are equivalent: 

(i) S4C ` φ; 

(ii) M |= φ. 

Proof. Immediate from Lemma 4.9.3 and Lemma 4.9.4. 
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AppendixA 

‘Connected’and‘Limited’ in 
Gunky Space 

In (1), Arntzenius takes as topological primitives the relation of being ‘connected’ 
and the property of being ‘limited.’ (These frst appeared together in Roeper’s ax-
iomatization of what he called ‘region-based topology.’ 1) Intuitively, two regions 
are connected if they overlap or at least share a boundary point; a region is limited if 
it is bounded from the outside. Arntzenius defnes these relations in reduced mea-
sure algebras by giving defnitions for pointy topological spaces that are invariant 
under differences of measure zero: 

1Roeper’s ten axioms for pointless topology are as follows: 

(A1) IfpointlessregionA isconnectedtopointlessregionB, thenB isconnectedtoA. 
(A2) Every pointless region that is not the pointless 1null region’ is connected to itself. 
(A3) The null region is not connected to any pointless region. 
(A4) If A is connected to B and B is a part of C then A is connected to C. 
(A5) If A is connected to the ‘fusion’ of B and C, then A is connected to B or A is connected to C. 
(A6) The null region is limited. 
(A7) If A is limited and B is a part of A then B is limited. 
(A8) If A and B are limited then the fusion of A and B is limited. 
(A9) If A is connected to B then there is a pointless limited region C such that C is a part of B, and 

A is connected to C. 
(A10) If A is limited, B isnot thepointlessnull region, and A isnotconnectedtothecomplement 

of B, then there is a pointless region C which is non-null and limited, such that A is not 
connected to the complement of C, and C is not connected to the complement of B. 

Arntzeniusshowsthatonhis defnitions of ‘connectedness’and‘limited’ for elements ofreduced 
measure algebras,axioms (A1) - (A9) aresatisfed,but (A10) fails. 
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Defnition A.1 (Arntzenius: Connected). Pointy Borel sets A and B are connected 
if there exists a point p such that any open set containing p has an intersection of 
non-zero measure with both A and B. 

Defnition A.2 (Arntzenius: Limited). Pointy Borel set A is limited just in case for 
2 some compact pointy set B we have measure A ∩ B = measure (A). 

Inthisappendix,wesuggestawayofreproducingtheserelationsinthemeasure-
theoreticsettingbyintroducinga topological basis for the collection ofopen ele-
ments in the algebra. 

Recall the notion of a basis in pointy topology. 

Defnition A.3. Let hX, T i be a topological space. A subset B of T is a basis if 
every member of T  is a union of members of B. 

In the real line with its standard topology, for example, we could take as a basis 
the collection of all open intervals, or the collection of all rational open intervals 
(intervals with rational endpoints). Let us defne an analogous notion for reduced 
measure algebras. 

Defnition A.4. Let M be a reduced measure algebra, and let G be  the  corre-
sponding collection of open elements.  A subset B of G is a basis if every member 
of G is a join of members of B. 

Intheremainderofthisappendix,let M denote a reduced measure algebra aris-
ingfromn-dimensionalEuclideanspacetogetherwithstandardLebesguemeasure. 
We select as our basis the collection of elements represented by n-dimensional 
opencubes,orthecollectionofelementsrepresentedbyn-dimensionalopenspheres 
(alternatively, rational cubes and rational spheres). 

We now defne the relations of connectedness and limitedness by reference to 
this basis. 

Defnition A.5. Let a and b be elements of M. Then a and b are connected if there 
exists a set {cn | n ∈ N} of non-zero basic open elements in M such that 

lim measure (cn) = 0 
n→∞ 

cn > cn+1 

and 
cn ∧ a = 0, cn ∧ b 6= 0 

for all n ∈ N. 
2In fact, Arntzeniusgives a differentbut equivalent formulation: A is limited if there is a compact 

pointysetBsuchthatmeasure(A∩complement(B))=0. 
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Defnition A.6. Let a be an element of the Lebesgue measure algebra, M. Then a 
is limited if there exists a basic open element of the algebra, c, such that a ≤ c. 

The following two propositions show that Defnitions A.1 and A.2 are equiva-
lent to Defnitions A.5 and A.6, respectively. 

Proposition A.7. Two elements a and b of are connected according to Defnition M 
A.1 if and only if they are connected according to Defnition A.5. 

Proof. Let A and B be Borel subsets of the real line, and let a and b be the 
corresponding elements of . If a and b are connected according to Defnition M 
A.1, then there is a point, p, such that any open set containing p has an inter-
section of non-zero measure with A and with B. Let Cn be the open interval 
centered at p with length ( 1 )n, and let cn be the corresponding element of M 2 
(n N). Then cn is a descending chain of non-zero basic open elements such that ≥ 
limn    measure (cn) 0. Moreover, measure(cn  a) = measure(Cn  A)= 

→∞ → ∧ ∩ 
0.3 This shows that if two elements of the algebra are connected according to Def-
inition A.1, then they are also connected according to Defnition A.5. 

For the converse, suppose that a and b are connected according to Defnition 
A.5. Then there is a descending sequence, hcni, of non-zero basic open elements in 
M with measure tending to zero, such that cn intersects both a and b for all n 

∈ N. LetCnbearepresentativeopenintervalofcn. ThenCnhasleftandright 
endpoints, which we denote by Ln and Rn, respectively. Note that Ln and Rn h i h i 
are bounded, monotone sequences of real numbers, hence converge. Moreover, 
sincethemeasureofcntendstozero,thesesequencesconvergetothesamepoint, 
which wedenoteby p. Thereadercannowconvinceherself thatanyopensetof 
reals containing phas an intersection of non-zero measure with both A and B. This 
shows that if two elements of the algebra are connected according to Defnition 
A.5, then they are also connected according to Defnition A.1. 

Proposition A.8. An element a of M is limited according to Defnition A.2 if and 
only if they it is limited according to Defnition A.6. 

Proof. Suppose that a is an element of M and that A is a representative of a 
satisfying Defnition A.2. Then there is a compact set B such that measure (A ∩ 
B) = measure (A). Since these sets live in n-dimensional Euclidean space (i.e., 
Rn), B is closed and bounded. This means that there is a closed interval, C, such 

3Here we use ‘measure’ both for the Lebesgue measure onthe real line, andfor the measure 
function on the Lebesgue measure algebra. Strictly speaking, these functions have different domains, 
andsoshouldbedenoteddifferently.Wetrustthesloppinessherewillnotleadtoanyobscurity. 
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that B ⊆ C. Let band cbe the elements of M corresponding to pointy sets B and 
C, respectively. Then c is a basic open element, and we have: 

measure (a) = measure (a ∧ b) ≤ measure (a ∧ c) ≤ measure (a) 

It follows that a ≤ c. This shows that if an element of the algebra is limited 
according to Defnition A.2, then it is also limited according to Defnition A.6. 

For the converse, suppose that a is limited according to Defnition A.6, and 
that A is a representative of a. Then there is a basic open element, b, such that 
a b. Let B be an open interval representative of b. The closure of B, Cl(B), is a ≤ 
compact pointy set. Moreover, measure (A B) = measure (A). This shows that ∩ 
if an element of the algebra is limited according to Defnition A.6, then it is also 
limited according to Defnition A.2. 
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